DOI QR코드

DOI QR Code

Enhanced Efficiency of Nanoporous-layer-covered TiO2 NanotubeArrays for Front Illuminated Dye-sensitized Solar Cells

Kang, Soon-Hyung;Lee, Soo-Yong;Kim, Jae-Hong;Choi, Chel-Jong;Kim, Hyunsoo;Ahn, Kwang-Soon

  • 투고 : 2016.01.11
  • 심사 : 2016.02.20
  • 발행 : 2016.03.31

초록

Nanoporous-layer-covered TiO2 nanotube arrays (Type II TNTs) were fabricated by two-step electrochemical anodization. For comparison, conventional TiO2 nanotube arrays (Type I TNTs) were also prepared by one-step electrochemical anodization. Types I and II TNTs were detached by selective etching and then transferred successfully to a transparent F-doped SnO2 (FTO) substrate by a sol-gel process. Both FTO/Types I and II TNTs allowed front side illumination to exhibit incident photon-to-current efficiencies (IPCEs) in the long wavelength region of 300 to 750 nm without the absorption of light by the iodine-containing electrolyte. The Type II TNT exhibited longer electron lifetime and faster charge transfer than the Type I TNT because of its relatively fewer defect states. These beneficial effects lead to a high overall energy conversion efficiency (5.32 %) of the resulting dye-sensitized solar cell.

키워드

dye-sensitized solar cell;nanotube array;electron lifetime;charge transfer;front side illumination

참고문헌

  1. S. W. Jung, J.-H. Park, W. Lee, J.-H. Kim, H. Kim, C.-J. Choi and K.-S. Ahn, J. Appl. Phys., 110, 054301 (2011). https://doi.org/10.1063/1.3630114
  2. Q. Chen and D. Xu, J. Phys. Chem. C, 113, 6310 (2009). https://doi.org/10.1021/jp900336e
  3. J. Choi, S.-H. Park, Y. S. Kwon, J. Lim, I. Y. Song and T. Park, Chem. Commun., 48, 8748 (2012). https://doi.org/10.1039/c2cc33629d
  4. J. H. Park, T.-W. Lee, and M. G. Kang, Chem. Commun., 2867 (2008).
  5. D. Wang, B. Yu, C. Wang, F. Zhou and W. Liu, Adv. Mater., 21, 1964 (2009). https://doi.org/10.1002/adma.200801996
  6. S. W. Jung, S.-Y. Lee, M.-A. Park, J.-H. Kim, S.-H. Kang, H. Kim and C.-J. Choi, Mol. Cryst. Liq. Cryst., 598, 144 (2014). https://doi.org/10.1080/15421406.2014.933386
  7. A. Zaban, M. Greenshtein and J. Bisquert, ChemPhysChem, 4, 859 (2003). https://doi.org/10.1002/cphc.200200615
  8. G. Zhu, Z. Cheng, T. Lv, L. Pan, Q. Zhao and Z. Sun, Nanoscale, 2, 1229 (2010). https://doi.org/10.1039/c0nr00087f
  9. B. C. O’Regan, J. R. Durrant, P. M. Sommeling and N. J. Bakker, J. Phys. Chem. C, 111, 14001 (2007).
  10. B. O’Regan and M. Grätzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  11. J. Kwon and J. H. Park, J. Electrochem. Sci. Technol., 4, 89 (2013). https://doi.org/10.5229/JECST.2013.4.3.89
  12. M. Grätzel, Nature, 414, 338 (2001). https://doi.org/10.1038/35104607
  13. J.-H. Park, J.-Y. Kim, J.-H. Kim, C.-J. Choi, H. S. Kim, Y.-E. Sung and K.-S. Ahn, J. Power Sources, 196, 8904 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.063
  14. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett., 6, 215 (2006). https://doi.org/10.1021/nl052099j
  15. J.-Y. Kim, K.-H. Lee, J. Shin, S. H. Park, J. S. Kang, K. S. Han, M. M. Sung, N. Pinna and Y.-E. Sung, Nanotechnology, 25, 504003 (2014). https://doi.org/10.1088/0957-4484/25/50/504003
  16. Y.-C. Nah, I. Paramasivam and P. Schmuki, Chem Phys Chem, 11, 2698 (2010). https://doi.org/10.1002/cphc.201000276
  17. S. S. Park, Y. S. Won, Y. C. Choi, and J. H. Kim, Energy & Fuels, 23, 3732 (2009). https://doi.org/10.1021/ef900207y
  18. S.-J. Seo, H.-J. Cha, Y. S. Kang and M.-S. Kang, Electrochimica Acta, 145, 217 (2014). https://doi.org/10.1016/j.electacta.2014.09.016