DOI QR코드

DOI QR Code

Prediction of the Flight Times of Hydrochara affinis and Sternolophus rufipes in Paddy Fields Based on RCP 8.5 Scenario

RCP 8.5 기후변화 시나리오를 적용한 논 서식 애물땡땡이 (Sternolophus rufipes)와 잔물땡땡이(Hydrochara affinis)의 비행시기 예측

  • Received : 2015.09.04
  • Accepted : 2016.03.21
  • Published : 2016.03.30

Abstract

The total area of paddy field was estimated to be 55 % of the cultivated lands in South Korea, which is approximately 1 million hectares. Organisms inhabiting paddy fields if they are sensitive to environmental changes can be environmental indicator of paddy fields. Biological indicators such as phenology and distributional range are evaluated as intuitive and quantitative method to analyze the impact of climate change. This study aims to estimate flight time change of Hydrophilidae species' based on the RCP 8.5 climate change scenario. Unmanned monitoring systems were installed in Haenam, Buan, Dangjin and Cheorwon relative to the latitudinal gradient. In the three regions excepting Cheorwon, it was able to measure the abundance of flying Hydrochara affinis and Sternolophus rufipes. Degree-day for the flight time was determined based either on field measurement values and estimates of 2020s, 2050s and 2080s from KMA climate change scenario data. As a result, it is found that date of both species of initial flight becomes 15 days earlier, that of peak flight becomes 22 days earlier and that of final flight does 27 days earlier in 2080s compared to 2020s. The climate change impact on flight time is greater in coastal area, rural area and valley than inland area, urban area and plan. H. affinis and S. rufipes can be used as climate change indicator species.

Keywords

Climate change;RCP 8.5 scenario;Phenology;Unmanned monitoring system;Hydrochara affinis;Sternolophus rufipes

References

  1. Angus, R. B., 1983: Evolutionary stability since the Pleistocene illustrated by reproductive compatibility between Swedish and Spanish Helophorus lapponicus Thomson (Coleoptera, Hydrophilidae). Biological journal of the Linnean Society 19(1), 17-25. https://doi.org/10.1111/j.1095-8312.1983.tb00773.x
  2. Baek, H. M., D. G. Kim, M. J. Baek, C. Y. Lee, H. J. Kang, M. C. Kim, J. S. Yoo, and Y. J. Bae, 2014: Predation efficiency and preference of the Hydrophilid Water Beetle Hydrochara affinis (Coleoptera: Hydrophilidae) larvae on two mosquitos Culex pipiens molestus and Ochlerotatus togoi under laboratory conditions. Korean Journal of Environmental Biology 32(2), 112-117. https://doi.org/10.11626/KJEB.2014.32.2.112
  3. Elias, S. A., 1991: Insects and climate change. Bioscience, 552-559.
  4. Han, M. S., H. S. Bang, M. H. Kim, K. K. Kang, M. P. Jung, and D. B. Lee, 2010: Distribution characteristics of water scavenger beetles (Hydrophilidae) in Korean paddy field. Korean Society of Agriculture and Environment 29(4), 427-433. https://doi.org/10.5338/KJEA.2010.29.4.427
  5. Han, M. S., Y. E. Na, H. S. Bang, M. H. Kim, K. K. Kang, H. K. Hong, J. T. Lee, and B. G. Ko, 2008: Aquatic invertebrates in paddy ecosystem of Korea. National Academy of Agricultural Science, Suwon, Korea.
  6. Kim, J. G., Y. C. Choi, J. Y. Choi, H. S. Sim, H. C. Park, W. T. Kim, B. D. Park, J. E. Lee, K. K. Kang, and D. B. Lee, 2007: Ecological analysis and environmental evaluation of aquatic insects in agricultural ecosystem. Korean Journal of Applied Entomology 46(3), 355-341.
  7. Kim, M. K., M. S. Han, D. H. Jang, S. G. Baek, W. S. Lee, Y. H. Kim, and S. Kim, 2012: Production technique of observation grid data of 1km resolution. Journal of Climate 7(1), 55-68.
  8. Kim, M. K., D. H. Lee, and J. U. Kim, 2013: Production and validation of daily grid data with 1km resolution in South Korea. Journal of Climate 8(1), 13-25.
  9. Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kubler, P. Bissolli, O. Braslavska, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, A. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatcza, F. Mage, A. Mestre, O. Nordli, J. Penuelas, P. Pirinen, V. Remisova, H. Scheifinger, M. Striz, A. Susnik, A. J. H. van Vliet, F. E. Wielgolaski, S. Zach, and A. Zust, 2006: European phenological response to climate change matches the warming pattern. Global Change Biology 12(10), 1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
  10. Korea Meteorological Administration, 2012: The Climate Atlas of Korea. Korea Meteorological Administration, Seoul, Korea.
  11. Ministry of Agriculture, Food and Rural Affairs Republic of Korea, 2015: Agriculture, Food and Rural Affairs Major Statistics. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea.
  12. Nagler, P. L., S. Pearlstein, E. P. Glenn, T. Brown, H. L. Bateman, D. W. Bean, and K. R. Hultine, 2014: Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations. Remote Sensing of Environment 140, 206-219. https://doi.org/10.1016/j.rse.2013.08.017
  13. Nam, Y. W., S. H. Koh, D. S. Won, J. K. Kim, and W. I. Choi, 2013: An empirical predictive model for the flight time of Platypus koryoensis (Coleoptera: Platypodinae). Applied Entomology and Zoology 48, 515-524. https://doi.org/10.1007/s13355-013-0213-3
  14. Parmesan, C., 1996: Climate and species' range. Nature 382, 765-766. https://doi.org/10.1038/382765a0
  15. Parmesan, C., and G. Yohe, 2003: A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42. https://doi.org/10.1038/nature01286
  16. Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, 1999: Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579-583. https://doi.org/10.1038/21181
  17. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds, 2003: Fingerprints of global warming on wild animals and plants. Nature 421, 57-60. https://doi.org/10.1038/nature01333
  18. Saino, N., R. Ambrosini, D. Rubolini, J. von Hardenberg, A. Provenzale, K. Hupop, O. Hupop, A. Lehikoinen, E. Lehikoinen, K. Rainio, M. Romano, and L. Sokolov, 2011: Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proceedings of the Royal Society of London B: Biological Sciences 278, 835-842.
  19. Sparks, T. H., and A. Menzel, 2002: Observed changes in the seasons: an overview. International Journal on Climatology 22, 1715-1725. https://doi.org/10.1002/joc.821
  20. Stenseth, N. C., and A. Mysterud, 2002: Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proceedings of the National Academy of Sciences 99(21), 13379-13381.
  21. Wagner, T. L., H. Wu, P. J. H. Sharpe, and R. N. Coulson, 1984: Modeling distribution of insect development time: a literature review an application of Weibull function. Annals of the Entomological Society of America 77, 475-487. https://doi.org/10.1093/aesa/77.5.475
  22. Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, H. G. Ove, and F. Bairlein, 2002: Ecological responses to recent climate change. Nature 416, 389-395. https://doi.org/10.1038/416389a

Acknowledgement

Supported by : 농촌진흥청 국립농업과학원