Fabrication of Ultra-smooth 10 nm Silver Films without Wetting Layer

  • Devaraj, Vasanthan (Department of Physics, Chungnam National University) ;
  • Lee, Jongmin (Department of Physics, Chungnam National University) ;
  • Baek, Jongseo (Department of Physics, Chungnam National University) ;
  • Lee, Donghan (Department of Physics, Chungnam National University)
  • Received : 2016.01.25
  • Accepted : 2016.02.15
  • Published : 2016.03.30


Using conventional deposition techniques, we demonstrate a method to fabricate ultra-smooth 10 nm silver films without using a wetting layer or co-depositing another material. The argon working pressure plays a crucial role in achieving an excellent surface flatness for silver films deposited by DC magnetron sputtering on an InP substrate. The formation of ultra-smooth silver thin films is very sensitive to the argon pressure. At the optimum deposition condition, a uniform silver film with an rms surface roughness of 0.81 nm has been achieved.


Supported by : Chungnam National University


  1. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534-537 (2005).
  2. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Wang, Appl. Phys. Lett. 96, 043102 (2010).
  3. X. Zhang, and Z. Liu, Nat. Mater. 7, 435-441 (2008).
  4. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moschalkov, P. V. Dorpe, P. Norlander, and S. A. Maier, ACS Nano 4, 1664-1670 (2010).
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376-379 (2008).
  6. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science 336, 205-209 (2012).
  7. Y. J. Lu, J. Kim, H.Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Science 337, 450-453 (2012).
  8. P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
  9. M. Specht, J. D. Pedarnig, W. H. Heckl, and T. W. Hansch, Phys. Rev. Lett. 68, 476 (1992).
  10. H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, Opt. Express 15, 1076-1083 (2007).
  11. S. B. Sant, K. S. Gill, and R. E. Burell, Acta Biomater. 3, 341-350 (2007).
  12. F. Jing, H. Tong, L. Kong, and C. Wang, Appl. Phys. A-Mater. 80, 597-600 (2005).
  13. Y. Chi, E. Lay, T. Y. Chou, Y. H. Song, and A. J. Carty, Chem. Vap. Depos. 11, 206-212 (2005).
  14. R. S. Sennett and G. D. Scott, J. Opt. Soc. Am. A 40, 203-211 (1950).
  15. R. Lazzari and J. Jupille, Surf. Sci. 482-485, 823-828 (2005).
  16. V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, Nano Lett. 9, 178-182 (2009).
  17. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, Opt. Express 18, 5124-5134 (2010).
  18. W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildshev, and V. M. Shalaev, Appl. Phys. Lett. 97, 211107 (2010).
  19. N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, ACS Appl. Mater. Interfaces 5, 3048-3053 (2013).
  20. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, ACS Nano 4, 3139-3146 (2010).
  21. C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, Adv. Mater. 26, 5696-5701 (2014).
  22. N. E. Duygulu, A. O. Kodolbas, and A. Ekerim, J. Cryst. Growth. 394, 116-125 (2014).