DOI QR코드

DOI QR Code

Various Quantum Ring Structures: Similarity and diversity

  • Park, Dae-Han ;
  • Kim, Nammee
  • Received : 2016.02.22
  • Accepted : 2016.03.04
  • Published : 2016.03.30

Abstract

Similarity and diversity of various quantum ring structures are investigated by classifying energy dispersions of three different structures: an electrostatic quantum ring, a magnetic quantum ring, and a magnetic-electric quantum ring. The wave functions and the eigenenergies of a single electron in the quantum ring structures are calculated by solving the Schrdinger equation without any electron-electron interaction. Magnetoconductance is studied by calculating a two-terminal conductance while taking into account the backscattering via the resonance through the states of the quantum rings at the center of a quasi-one dimensional conductor. It is found that the energy spectra for the various quantum ring structures are sensitive to additional electrostatic potentials as well as to the effects of a nonuniform magnetic field. There are also characteristics of similarity and diversity in the energy dispersions and in the single-channel magnetoconductance.

Keywords

Single particle states;Electronic transport;Hybrid Quantum Structure;Magnetoconductance

References

  1. M. A. McCord and D. D. Awschalom, Appl. Phys. Lett. 57, 2153 (1990). https://doi.org/10.1063/1.103923
  2. M. L. Leadbeater, S. J. Allen, Jr., F. DeRosa, J. P. Harbison, T. Sands, R. Ramesh, L. T. Florez, and V. G. Keramidas, J. Appl. Phys. 69, 4689 (1991). https://doi.org/10.1063/1.348298
  3. S. H. Park and H. -S. Sim, Phys. Rev. B 77, 075433 (2008). https://doi.org/10.1103/PhysRevB.77.075433
  4. C.M. Lee, R. C.H. Lee, W.Y. Ruan, M.Y. Chou, and A. Vyas, Solid State Commun. 156, 49 (2013) https://doi.org/10.1016/j.ssc.2012.11.024
  5. Dali Wang and Guojun Jin, Phys. Lett. A 373, 4082 (2009). https://doi.org/10.1016/j.physleta.2009.09.007
  6. F. M. Peeters and A. Matulis, Phys. Rev. B 48, 15166 (1993) https://doi.org/10.1103/PhysRevB.48.15166
  7. F. M. Peeters and A. Matulis, Phys. Rev. Lett. 72, 1518 (1994) https://doi.org/10.1103/PhysRevLett.72.1518
  8. I. S. Ibrahim and F. M. Peeters, Phys. Rev. B 52, 17321 (1995) https://doi.org/10.1103/PhysRevB.52.17321
  9. I. S. Ibrahim and F. M. Peeters, Phys. Rev. B 56, 7508 (1997). https://doi.org/10.1103/PhysRevB.56.7508
  10. H-S. Sim, K-H. Ahn, K. J. Chang, G.Ihm, N. Kim, and S. J. Lee, Phys. Rev. Lett. 80, 1501 (1998) https://doi.org/10.1103/PhysRevLett.80.1501
  11. H. -S. Sim, G. Ihm, N, Kim, S. J. Lee, and K. J. Chang, Physica E, 12, 719 (2002). https://doi.org/10.1016/S1386-9477(01)00457-X
  12. J. E. Muller, Phys. Rev. Lett. 68, 385 (1992). https://doi.org/10.1103/PhysRevLett.68.385
  13. M. Calvo, Phys. Rev. B 48, 2365 (1993) https://doi.org/10.1103/PhysRevB.48.2365
  14. M. Calvo, Phys. Rev. B 51, 2268 (1995). https://doi.org/10.1103/PhysRevB.51.2268
  15. N. Kim, G. Ihm, H.-S. Sim, and K. J. Chang, Phys. Rev. B 60, 8767 (1999). https://doi.org/10.1103/PhysRevB.60.8767
  16. Y. Takagaki and D. K. Ferry, Phys. Rev B. 48, 8152 (1993). https://doi.org/10.1103/PhysRevB.48.8152
  17. R. Garibay-Alomso, J. L. Marin and R. A. Rosas, Solid States Commun. 137, 248 (2006).
  18. W.-C. Tan and J. C. Inkson, Phys. Rev. B 53, 6947 (1996). https://doi.org/10.1103/PhysRevB.53.6947
  19. U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43, 7320 (1991) https://doi.org/10.1103/PhysRevB.43.7320
  20. M.Wagner, U. Merkt, and A.V. Chaplik, Phys. Rev. B 45, 1951 (1992).
  21. C. M. Lee and K. S. Chan, J. Appl. Phys. 114, 143708 (2013). https://doi.org/10.1063/1.4824808

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)