DOI QR코드

DOI QR Code

Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 Ceramics

Han, Hyoung-Su;Hong, In-Ki;Kong, Young-Min;Lee, Jae-Shin;Jo, Wook

  • Received : 2016.02.03
  • Accepted : 2016.03.21
  • Published : 2016.03.31

Abstract

$(Bi_{1/2}Na_{1/2})_{0.94}Ba_{0.06}(Ti_{1-x}Nb_x)O_3$ (BNBTxNb) ceramics were investigated in terms of the crystal structure as well as the ferroelectric, dielectric, and piezoelectric properties. While little change was observed in the microstructure except for a slight decrease in the average grain size, a significant change was noticed in the temperature dependence of dielectric and piezoelectric properties. It was shown that the property changes are closely related to the downward shift in the position of the ferroelectric-to-relaxor transition temperature with increasing amount of Nb doping. A special emphasis is put on the fact that Nb doping is so effective at decreasing the ferroelectric-to-relaxor transition temperature that even at no more than 2 at.% Nb addition, the transition temperature was already brought down slightly below room temperature, resulting in the birth of a large strain at 0.46 %, equivalent to $S_{max}/E_{max}=767pm/V$.

Keywords

Lead-free piezo ceramics;Relaxor ferroelectrics;Electromechanical strain

References

  1. J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  2. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  3. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications-Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012). https://doi.org/10.1007/s10832-012-9742-3
  4. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C.-W. Ahn, and W. Jo, "Lead-Free Piezoceramics-Where to Move on?," J. Materiomics, 2 [1] 1-24 (2016). https://doi.org/10.1016/j.jmat.2015.12.002
  5. T. Takenaka, K.-I. Maruyama, and K. Sakata, "($Bi_{1/2}Na_{1/2}$)$TiO_3$-$BaTiO_3$ System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 30 [9S] 2236-39 (1991). https://doi.org/10.1143/JJAP.30.2236
  6. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, "Dielectric and Piezoelectric Properties of ($Bi_{0.5}Na_{0.5}$)$TiO_3$-($Bi_{0.5}K_{0.5}$)$TiO_3$ Systems," Jpn. J. Appl. Phys., 38 [9S] 5564-67 (1999). https://doi.org/10.1143/JJAP.38.5564
  7. S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, "Giant Strain in Lead-Free Piezoceramics $Bi_{0.5}Na_{0.5}$ $TiO_3$-$BaTiO_3$-$K_{0.5}Na_{0.5}NbO_3$ System," Appl. Phys. Lett., 91 [11] 112906 (2007). https://doi.org/10.1063/1.2783200
  8. K.-N. Pham, A. Hussain, C.-W. Ahn, W. Kim, S. J. Jeong, and J.-S. Lee, "Giant Strain in Nb-Doped $Bi_{0.5}$ $(Na_{0.82}K_{0.18})_{0.5}$ $TiO_3$ Lead-Free Electromechanical Ceramics," Mater. Lett., 64 [20] 2219-22 (2010). https://doi.org/10.1016/j.matlet.2010.07.048
  9. K.-N. Pham, H. B. Lee, H.-S. Han, J.-K. Kang, J.-S. Lee, A. Ullah, C.-W. Ahn, and I. W. Kim, "Dielectric, Ferroelectric, and Piezoelectric Properties of Nb-Substituted $Bi_{1/2}$$(Na_{0.82}K_{0.18})_{1/2}$ $TiO_3$ Lead-Free Ceramics," J. Kor. Phys. Soc., 60 [2] 207-11 (2012). https://doi.org/10.3938/jkps.60.207
  10. A. Ullah, R. A. Malik, A. Ullah, D. S. Lee, S. J. Jeong, J.-S. Lee, I. W. Kim, and C.-W. Ahn, "Electric-Field-Induced Phase Transition and Large Strain in Lead-Free Nb-Doped BNKT-BST Ceramics," J. Eur. Ceram. Soc., 34 [1] 29-35 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.07.014
  11. R. A. Malik, J.-K. Kang, A. Hussain, C.-W. Ahn, H.-S. Han, and J.-S. Lee, "High Strain in Lead-Free Nb-Doped $Bi_{1/2}(Na_{0.84}K_{0.16})_{1/2}$ $TiO_3$-$SrTiO_3$ Incipient Piezoelectric Ceramics," Appl. Phys. Express, 7 [6] 061502 (2014). https://doi.org/10.7567/APEX.7.061502
  12. K. T. Lee, J. S. Park, J. H. Cho, Y. H. Jeong, J. H. Paik, and J. S. Yun, "The Study on the Phase Transition and Piezoelectric Properties of $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}$$TiO_3$-$LaMnO_3$ Leadfree Piezoelectric Ceramics," J. Korean Ceram. Soc., 52 [4] 237-42 (2015). https://doi.org/10.4191/kcers.2015.52.4.237
  13. W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, "Origin of the Large Strain Response in ($K_{0.5}Na_{0.5}$)$NbO_3$-Modified ($Bi_{0.5}Na_{0.5}$)$TiO_3$-$BaTiO_3$ Lead-Free Piezoceramics," J. Appl. Phys., 105 [9] 094102 (2009). https://doi.org/10.1063/1.3121203
  14. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rodel, "On the Phase Identity and Its Thermal Evolution of Lead Free ($Bi_{1/2}Na_{1/2}$)$TiO_3$-6mol% $BaTiO_3$," J. Appl. Phys., 110 [7] 074106 (2011). https://doi.org/10.1063/1.3645054
  15. A. Glazounov, A. Tagantsev, and A. J. Bell, "Evidence for Domain-Type Dynamics in the Ergodic Phase of the $PbMg_{1/3}Nb_{2/3}O_3$ Relaxor Ferroelectric," Phys. Rev. B, 53 [17] 11281-84 (1996). https://doi.org/10.1103/PhysRevB.53.11281
  16. A. J. Bell, "Calculations of Dielectric Properties from the Superparaelectric Model of Relaxors," J. Phys. Condens. Matter, 5 [46], 8773 (1993). https://doi.org/10.1088/0953-8984/5/46/015
  17. W. Jo, J.-B. Ollagnier, J.-L. Park, E.-M. Anton, O. J. Kwon, C. Park, H.-H. Seo, J.-S. Lee, E. Erdem, R.-A. Eichel, and J. Rodel, "CuO as a Sintering Additive for ($Bi_{1/2}Na_{1/2}$)$TiO_3$-$BaTiO_3$-($K_{0.5}Na_{0.5}$)$NbO_3$ Lead-Free Piezoceramics," J. Eur. Ceram. Soc., 31 [12] 2107-17 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.008
  18. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, "Freezing of the Polarization Fluctuations in Lead Magnesium Niobate," J. Appl. Phys., 68 2916-21 (1990). https://doi.org/10.1063/1.346425
  19. K. Wang, A. Hussain, W. Jo, and J. Rodel, "Temperature-Dependent Properties of ($Bi_{1/2}Na_{1/2}$)$TiO_3$-($Bi_{1/2}K_{1/2}$)$TiO_3$-$SrTiO_3$ Lead-Free Piezoceramics," J. Am. Ceram. Soc., 95 [7] 2241-47 (2012). https://doi.org/10.1111/j.1551-2916.2012.05162.x
  20. H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. W. Kim, K.-K. Ahn, and J.-S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-Doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}$ $TiO_3$ Lead-Free Ceramics," J. Appl. Phys., 113 [15] 154102 (2013). https://doi.org/10.1063/1.4801893
  21. H.-S. Han, W. Jo, J. Rodel, I.-K. Hong, W. P. Tai, and J.-S. Lee, "Coexistence of Ergodicity and Nonergodicity in $LaFeO_3$-Modified $Bi_{1/2}(Na_{0.78}K_{0.22})_{1/2}$ $TiO_3$ Relaxors," J. Phys. Condens. Matter., 24 [36] 365901 (2012). https://doi.org/10.1088/0953-8984/24/36/365901
  22. V. Westphal, W. Kleemann, and M. Glinchuk, "Diffuse Phase Transitions and Random-Field-Induced Domain States of the "Relaxor" Ferroelectric Pb($Mg_{1/3}Nb_{2/3}$)$O_3$," Phys. Rev. lett., 68 [6] 847-50 (1992). https://doi.org/10.1103/PhysRevLett.68.847
  23. F. D. Morrison, D. C. Sinclair, and A. R. West, "Electrical and Structural Characteristics of Lanthanum-Doped Barium Titanate Ceramics," J. Appl. Phys., 86 [11] 6355-66 (1999). https://doi.org/10.1063/1.371698
  24. F. D. Morrison, D. C. Sinclair, and A. R. West, "An Alternative Explanation for the Origin of the Resistivity Anomaly in La-Doped $BaTiO_3$," J. Am. Ceram. Soc., 84 [2] 474-76 (2001).
  25. F. D. Morrison, D. C. Sinclair, and A. R. West, "Doping Mechanisms and Electrical Properties of La-Doped $BaTiO_3$ Ceramics," Int. J. Inorg. Mater., 3 [8], 1205-10 (2001). https://doi.org/10.1016/S1466-6049(01)00128-3
  26. C. L. Freeman, J. A. Dawson, H.-R. Chen, L. Ben, J. H. Harding, F. D. Morrison, D. C. Sinclair, and A. R. West, "Energetics of Donor-Doping, Metal Vacancies, and Oxygen-Loss in A-Site Rare-Earth-Doped $BaTiO_3$," Adv. Func. Mater., 23 [31] 3925-28 (2013). https://doi.org/10.1002/adfm.201203147

Cited by

  1. Revealing the role of heat treatment in enhancement of electrical properties of lead-free piezoelectric ceramics vol.122, pp.1, 2017, https://doi.org/10.1063/1.4991492
  2. Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs vol.54, pp.2, 2017, https://doi.org/10.4191/kcers.2017.54.2.12
  3. Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.04
  4. Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications vol.56, pp.1, 2019, https://doi.org/10.4191/kcers.2019.56.1.02

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)