A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects

Lee, Jong-Sook

  • Received : 2016.02.12
  • Accepted : 2016.03.03
  • Published : 2016.03.31


The conventional brick-layer model is not satisfactory either in theory or in practice for the description of dispersive responses of polycrystalline solid electrolytes with current-constriction effects at the grain boundaries. Parallel networks of complex dielectric functions have been shown to successfully describe the AC responses of polycrystalline sodium conductors over a wide temperature and frequency range using only around ten model parameters of well-defined physical significance. The approach can be generally applied to many solid electrolyte systems. The present work illustrates the approach by simulation. Problems of bricklayer model analysis are demonstrated by fitting analysis of the simulated data under experimental conditions.


Solid electrolytes;Current-constriction;Dielectric spectroscopy;Simulation;Complex dielectric function


  1. K. Cole and R. Cole, "Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics," J. Chem. Phys., 9 [4] 341-51 (1941).
  2. E.-C. Shin, J. Ma, P.-A. Ahn, H.-H. Seo, D. T. Nguyen, and J. S. Lee, "Deconvolution of Four Transmission-Line-Model Impedances in Ni-YSZ/YSZ/LSM Solid Oxide Cells and Mechanistic Insights," Electrochim. Acta, 188 [10] 240-53 (2016).
  3. J.-H. Kim, E.-C. Shin, D.-C. Cho, S. Kim, S. Lim, K. Yang, J. Beum, J. Kim, S. Yamaguchi, and J.-S. Lee, "Electrical Characterization of Polycrystalline Sodium ${\beta}{\prime}{\prime}$-alumina: Revisited and Resolved," Solid State Ionics, 264 22-35 (2014).
  4. S.-H. Moon, D.-C. Cho, D. T. Nguyen, E.-C. Shin, and J.-S. Lee, "A Comprehensive Treatment of Universal Dispersive Frequency Responses in Solid Electrolytes by Immittance Spectroscopy: Low Temperature AgI Case," J. Solid State Electrochem., 19 [8] 2457-64 (2015).
  5. S.-H. Moon, Y.-H. Kim, D.-C. Cho, E.-C. Shin, D. Lee, W. B. Im, and J.-S. Lee, "Sodium Ion Transport in Polymorphic Scandium NASICON Analog $Na_3Sc_2(PO_4)_3$ with New Dielectric Spectroscopy Approach for Current-Constriction Effects," Solid State Ionics, 289 55-71 (2016).
  6. J. Fleig and J. Maier, "The Impedance of Ceramics with Highly Resistive Grain Boundaries: Validity and Limits of the Brick Layer Model," J. Eur. Ceram. Soc., 19 [6] 693-96 (1999).
  7. J. Fleig and J. Maier, "Finite-Element Calculations on the Impedance of Electroceramics with Highly Resistive Grain Boundaries: I, Laterally Inhomogeneous Grain Boundaries," J. Am. Ceram. Soc., 82 [12] 3485-93 (1999).
  8. B. A. Boukamp, "Practical Application of the Kramers-Kronig Transformation on Impedance Measurements in Solid State Electrochemistry," Solid State Ionics, 62 131-41 (1993).
  9. B. Boukamp,"A Linear Kronig-Kramers Transform Test for Immittance Data Validation," J. Electrochem. Soc., 142 [6] 1885-94 (1995).
  10. D. Davidson and R. Cole, "Dielectric Relaxation in Glycerol, Propylene Glycol, and n-Propanol," J. Chem. Phys., 19 [12] 1484-90 (1951).
  11. S. Havriliak and S. Negami, "A Complex Plane Analysis of ${\alpha}$-dispersions in Some Polymer Systems," J. Polym. Sci., Part C: Polym. Symp., 14 [1] 99-117 (1966).
  12. A. Boersma, J. Van Turnhout, and M. Wubbenhorst, "Dielectric Characterization of a Thermotropic Liquid Crystalline Copolyesteramide: 1. Relaxation Peak Assignment," Macromolecules, 31 [21] 7453-60 (1998).
  13. R. Diaz-Calleja, "Comment on the Maximum in the Loss Permittivity for the Havriliak-Negami Equation," Macromolecules, 33 [24] 8924-24 (2000).
  14. S. Havriliak and S. Havriliak, "Results from an Unbiased Analysis of Nearly 1000 Sets of Relaxation Data," J. Non-Cryst. Solids, 172 297-310 (1994).
  15. J. R. Macdonald, "New Model for Nearly Constant Dielectric Loss in Conductive Systems: Temperature and Concentration Dependencies," J. Chem. Phys., 116 [8] 3401-9 (2002).
  16. J. R. Macdonald, "Universality, the Barton-Nakajima-Namikawa Relation, and Scaling for Dispersive Ionic Materials," Phys. Rev. B, 71 [18] 184307 (2005).
  17. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Application; Wiley Inter-Science, Hoboken, New Jersey, 2005.
  18. J. R. Macdonald, "Impedance Spectroscopy: Models, Data Fitting, and Analysis," Solid State Ionics, 176 [25] 1961-69 Hokken, New Jerser (2005).
  19. J. R. Macdonald, Impedance spectroscopy: Theory, Experiment, and Applications; Chapter 4, pp. 264-82, Wiley Inter-Science, Hoboken, New Jersey, 2005.
  20. J. R. Macdonald, "Surprising Conductive-and Dielectric-System Dispersion Differences and Similarities for Two Kohlrausch-related Relaxation-Time Distributions," J. Phys.: Condens. Matter, 18 [2] 629-44 (2006).
  21. J. R. Macdonald, CNLS Immittance, Inversion, and Simulation Fitting Program LEVM/LEVNW Manual; 8.13 edition, 2015.
  22. A. K. Jonscher, "The Universal Dielectric Response," Nature, 267 673-79 (1977).
  23. K. Funke, "Jump Relaxation in Solid Electrolytes," Prog. Solid State Chem., 22 [2] 111 (1993).
  24. A. K. Jonscher, "Dielectric Relaxation in Solids," J. Phys. Appl. Phys., 32 [14] R57 (1999).
  25. D. Almond, A. West, and R. Grant, "Temperature Dependence of the Ac Conductivity of Na ${\beta}$ Aumina," Solid State Comm., 44 [8] 1277-80 (1982).
  26. D. Sidebottom, P. Green, and R. Brow, "Comparison of KWW and Power Law Analyses of an Ion-Conducting Glass," J. Non-Cryst. Solids, 183 [1] 151-60 (1995).
  27. A. Nowick, A. Vaysleyb, and I. Kuskovsky, "Universal Dielectric Response of Variously Doped $CeO_2$ Ionically Conducting Ceramics," Phys. Rev. B, 58 [13] 8398 (1998).
  28. D. L. Sidebottom, "Universal Approach for Scaling the Ac Conductivity in Ionic Glasses," Phys. Rev. Lett., 82 [18] 3653 (1999).
  29. K. L. Ngai, "Properties of the Constant Loss in Ionically Conducting Glasses, Melts, and Crystals," J. Chem. Phys., 110 [21] 10576-84 (1999).
  30. K. L. Ngai and C. Leon, "Cage Decay, Near Constant Loss, and Crossover to Cooperative Ion Motion in Ionic Conductors: Insight from Experimental Data," Phys. Rev. B, 66 [6] 064308 (2002).
  31. B. Roling, C. Martiny, and S. Murugavel, "Ionic Conduction in Glass: New Information on the Interrelation between the 'Jonscher Behavior' and the 'Nearly Constant-Loss Behavior' from Broadband Conductivity Spectra," Phys. Rev. Lett., 87 [8] 085901 (2001).
  32. K. Funke, R. Banhatti, and C. Cramer, "Correlated Ionic Hopping Processes in Crystalline and Glassy Electrolytes Resulting in MIGRATION-type and Nearly-Constant-Loss-Type Conductivities," Phys. Chem. Chem. Phys., 7 [1] 157-65 (2005).
  33. J. R. Macdonald, "Nearly Constant Loss or Constant Loss in Ionically Conducting Glasses: A Physically Realizable Approach," J. Chem. Phys., 115 [13] 6192-99 (2001).
  34. J. R. Macdonald, "Discrimination between Series and Parallel Fitting Models for Nearly Constant Loss Effects in Dispersive Ionic Conductors," J. Non-Cryst. Solids, 307 913-20 (2002).
  35. R. Banhatti, D. Laughman, L. Badr, and K. Funke, "Nearly Constant Loss Effect in Sodium Borate and Silver Meta- Phosphate Glasses: New Insights," Solid State Ionics, 192 [1] 70-5 (2011).
  36. P. Lunkenheimer and A. Loidl, "Response of Disordered Matter to Electromagnetic Fields," Phys. Rev. Lett., 91 [20] 207601 (2003).
  37. J.-S. Lee, J. Jamnik, and J. Maier, "Generalized Equivalent Circuits for Mixed Conductors: Silver Sulfide as a Model System," Monatash. Chem. Chem. Mon., 140 [9] 1113-19 (2009).
  38. E.-C. Shin, P.-A. Ahn, H.-H. Seo, J.-M. Jo, S.-D. Kim, S.-K. Woo, J. H. Yu, J. Mizusaki, and J.-S. Lee, "Polarization Mechanism of High Temperature Electrolysis in a Ni-YSZ/ YSZ/LSM Solid Oxide Cell by Parametric Impedance Analysis," Solid State Ionics, 232 80-96 (2013).
  39. E.-C. Shin, Y.-H. Kim, S.-J. Kim, C.-N. Park, J. Kim, and J.-S. Lee, "Pneumatochemical Immittance Spectroscopy for Hydrogen Storage Kinetics," J. Phys. Chem. C, 117 [39] 19786-808 (2013).
  40. S. Kim, J. Fleig, and J. Maier, "Space Charge Conduction: Simple Analytical Solutions for Ionic and Mixed Conductors and Application to Nanocrystalline Ceria," Phys. Chem. Chem. Phys., 5 [11] 2268-73 (2003).
  41. J.-S. Lee, S. Adams, and J. Maier, "Defect Chemistry and Transport Characteristics in ${\beta}$ -AgI," J. Phys. Chem. Solids, 61 1607-22 (2000).
  42. X. Guo and R. Waser, "Electrical Properties of the Grain Boundaries of Oxygen Ion Conductors: Acceptor-Doped Zirconia and Ceria," Prog. Mater. Sci., 51 [2] 151-210 (2006).
  43. C. Kjolseth, H. Fjeld, O. Prytz, P. Dahl, C. Estournes, R. Haugsrud, and T. Norby, "Space-Charge Theory Applied to the Grain Boundary Impedance of Proton Conducting $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$," Solid State Ionics, 181 [5-7] 268-75 (2010).
  44. C.-T. Chen, C. E. Danel, and S. Kim, "On the Origin of the Blocking Effect of Grain-Boundaries on Proton Transport in Yttrium-doped Barium Zirconates," J. Mater. Chem., 21 [14] 5435-42 (2011).
  45. M. Shirpour, R. Merkle, C. Lin, and J. Maier, "Nonlinear Electrical Grain Boundary Properties in Proton Conducting Y-$BaZrO_3$ Supporting the Space Charge Depletion Model," Phys. Chem. Chem. Phys., 14 [2] 730-40 (2012).
  46. C. R. Mariappan, M. Gellert, C. Yada, F. Rosciano, and B. Roling, "Grain Boundary Resistance of Fast Lithium Ion Conductors: Comparison between a Lithium-Ion Conductive Li-Al-Ti-P-O-type Glass Ceramic and a $Li_{1.5}Al_{0.5}Ge_{1.5}P_3O_{12}$ Ceramic," Electrochem. Comm., 14 [1] 25-8 (2012).
  47. I. Raistrick, C. Ho, and R. A. Huggins, "Ionic Conductivity of Some Lithium Silicates and Aluminosilicates," J. Electrochem. Soc., 123 [10] 1469-76 (1976).
  48. P. G. Bruce and A. R. West, "The A-C Conductivity of Polycrystalline LISICON, $Li_{2+2x}Zn_{1-x}GeO_4$, and a Model for Intergranular Constriction Resistances," J. Electrochem. Soc., 130 [3] 662-69 (1983).
  49. J.-S. Lee, E.-C. Shin, D.-K. Shin, Y. Kim, P.-A. Ahn, H.-H. Seo, J.-M. Jo, J.-H. Kim, G.-R. Kim, Y.-H. Kim, J.-Y. Park, C.-H. Kim, J.-O. Hong, and K.-H. Hur, "Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors," J. Korean Ceram. Soc., 49 [5] 475-83 (2012).
  50. H.-I. Yoo, T.-S. Oh, H.-S. Kwon, D.-K. Shin, and J.-S. Lee, "Electrical Conductivity-Defect Structure Correlation of Variable-Valence and Fixed-Valence Acceptor-Doped $BaTiO_3$ in Quenched State," Phys. Chem. Chem. Phys., 11 [17] 3115-26 (2009).
  51. J. R. Macdonald, "Comparison of the Universal Dynamic Response Power-Law Fitting Model for Conducting Systems with Superior Alternative Models," Solid State Ionics, 133 [1] 79-97 (2000).

Cited by

  1. Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects vol.53, pp.5, 2016,
  2. Columnar Grain Size Effect on Cross-Plane Conductivity of Yttria-Stabilized Zirconia Thin Films vol.165, pp.9, 2018,
  3. Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode vol.55, pp.3, 2018,


Supported by : National Research Foundation of Korea (NRF)