DOI QR코드

DOI QR Code

제주도 현무암에 포획된 페리도타이트에 산출되는 맨틀 기원의 CO2-유체포유물

서민영;우용훈;박근영;김은주;임현수;양경희
Seo, Minyoung;Woo, Yonghoon;Park, Geunyeong;Kim, Eunju;Lim, Hyoun Soo;Yang, Kyounghee

  • 투고 : 2016.02.01
  • 심사 : 2016.03.05
  • 발행 : 2016.03.31

초록

제주도 현무암에 산출되는 첨정석 페리도타이트 포획암에 $CO_2$-유체포유물이 포획되어 있다. 이 $CO_2$-유체포유물들은 규칙적인 결정면으로 둘러싸여 있으며 세립의 네오블라스트 결정에는 일차포유물로, 조립의 반상쇄성에는 이차포유물로 산출된다. 냉각/가열 실험에서 $CO_2$-유체포유물의 삼중점은 $-57.1^{\circ}C$(${\pm}0.9^{\circ}C$)로서 대체로 균질하다. 이는 이 $CO_2$-유체포유물들이 거의 순수하게 $CO_2$로 이루어져 있음을 의미한다. 그러나 균질화 온도는 $-39^{\circ}C$(${\rho}=1.12g/cm^{3)}$)에서 $23^{\circ}C$(${\rho}=0.82g/cm^{3)}$)로 넓은 범위에 걸쳐 나타나며, 이는 많은 유체포유물이 포획된 이후 재평형 되어졌음을 반영한다. 일차/이차포유물과 균질화온도 사이에 체계적인 차이는 없다. 가장 낮은 균질화온도(즉, 가장 높은 밀도)를 보이는 유체포유물에서 계산된 포획 압력은 ${\approx}0.9GPa$이다. 제주 페리도타이트와 $CO_2$-유체포유물의 조직적 특성과 낮은 균질화 온도는 $CO_2$-유체가 맨틀기원의 유체로서 상부 맨틀암석권에서 페리도타이트의 재결정화 작용 동안 존재하던 유체로 해석된다. $CO_2$-유체의 포획은 제주 페리도타이트의 진화과정에서 후기의 사건이며, 상부맨틀 암석권의 상부(천부)에서 일어났음을 지시하고 있다.

키워드

제주도;첨정석 페리도타이트 포획암;$CO_2$-유체포유물;상부맨틀암석권유체;재평형

참고문헌

  1. Berkesi, M., Guzmics, T., Szabó, C., Dubessy, J., Bodnar, R.J., Hidas, K., and Ratter, K., 2012, The role of $CO_2$-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths. Earth and Planetary Science Letters, 331-332, 8-20. https://doi.org/10.1016/j.epsl.2012.03.012
  2. Bodnar, R.J., Binns, P.R., Hall, and D.L., 1989, Synthetic fluid inclusions-VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. Journal of metamorphic geology, 7, 229-242. https://doi.org/10.1111/j.1525-1314.1989.tb00586.x
  3. Brey, G.P. and Kohler, T.P., 1990, Geothermobarometry in four phase lherzolites. II. New thermobarometers and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353-1378. https://doi.org/10.1093/petrology/31.6.1353
  4. Choi, S.H., Lee, J.I., Park, C.H., and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. The Island Arc, 11, 221-235. https://doi.org/10.1046/j.1440-1738.2002.00367.x
  5. Choi, S.H.,, Kwon S.T., Mukasa, S.B., and Sagong, H., 2005, Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chemical Geology, 221, 40-64. https://doi.org/10.1016/j.chemgeo.2005.04.008
  6. Chough, S.K., Kwon, S.T., Ree, J.H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Reviews, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  7. Degi, J., Abart, R., Torok, K., Bali, E., Wirth, R., and Rhede, D., 2010, Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: mechanisms and rates. Contributions to Mineralogy and Petrology, 159, 293-314. https://doi.org/10.1007/s00410-009-0428-z
  8. Frezzotti, M.L., Devivo, B., and Clocchiatti, R., 1991, Melt mineral-fluid interactions in ultramafic nodules from alkaline lavas of Mount Etna (Sicily, Italy) - melt and fluid inclusion evidence. Journal of Volcanology and Geothermal Research, 47(3-4), 209-219. https://doi.org/10.1016/0377-0273(91)90001-G
  9. Frezzotti, M.L. and Peccerillo, A., 2007, Diamond-bearing COHS fluids in the mantle beneath Hawaii. Earth and Planetary Science Letters, 262, 273-283. https://doi.org/10.1016/j.epsl.2007.08.001
  10. Frey, F.A. and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona; petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129-178. https://doi.org/10.1016/0012-821X(78)90130-9
  11. Heo, S.Y., Yang, K.H., and Jeong, H.Y., 2012, Hydrous Minerals (Phlogopite and Amphibole) from Basaltic Rocks, Jeju Island: Evidences for Modal Metasomatism. Journal of Petrological Society of Korea, 21, 13-30 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.1.013
  12. Hidas, K., Guzmics, T., Szabo, C., Kovacs, I., Bodnar, R.J., Zajacz, Z., Nédli, Z., Vaccari, L., and Perucchi, A., 2010, Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary). Chemical Geology, 274, 1-18. https://doi.org/10.1016/j.chemgeo.2010.03.004
  13. Kil, Y.W., Shin, H.J., Yun, S.H., Koh, J.S., and Ahn, U.S., 2008, Geochemical Characteristics of Mineral Phases in the Mantle Xenoliths from Sunheul-ri, Jeju Island. Journal of Mineralogical Society of Korea, 21, 373-382(in Korean with English abstract).
  14. Kim, K.H., Nagao, K., Suzuki, K., Tanaka, T., and Park, E.J., 2003, Evidences of the presence of old continental basement in Jeju volcanic Island, South Korea, revealed by Radiometric ages and Nd-Sr isotopes of granitic rocks. Journal of Geochemical Exploration, 36, 421-441.
  15. Koh, K., Park, J.B., Kang, B.-R., Kim, G.-P., and Moon, D.C., 2013, Volcanism in Jeju Island. Journal of Geological Society of Korea, 49, 209-230 (Korean with English abstract).
  16. Lee, M.W., 1982. Petrology and geochemistry of Jeju volcanic island, Korea. The Science Report of the Tohoku Imperial University Section Series, 15, 177-256.
  17. Lee, S.M., Kim, S.W., and Jin, M.S., 1987, Igneous activities of the Cretaceous to the early Tertiary and their tectonic implication in South Korea. Journal of Geological Society of Korea, 28, 338-359 (Korean with English abstract).
  18. Mercier J.C. and Nicolas, A., 1975, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487. https://doi.org/10.1093/petrology/16.2.454
  19. Metrich, N., Schiano, P., Clocchiatti, R., and Maury, R.C., 1999, Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines). Earth and Planetary Science Letters, 167, 1-14. https://doi.org/10.1016/S0012-821X(99)00009-6
  20. Miyazawa, T., 1985, Regional lateral zoning of the Mesozoic to early Tertiary endogenic lead-zinc and copper deposits in East Asia and its geological background, with some comments on the drifting of the Japanese islands. Mining Geolology, 35, 31-39.
  21. O'Reilly, S. and Griffin, W., 1996, 4-D lithosphere mapping: methodology and examples. Tectonophysics, 262, 3-18. https://doi.org/10.1016/0040-1951(96)00010-8
  22. Otofuji, Y., Mastuda, T., and Nohda, S., 1985, Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japançrifting process of the Japan Sea. Earth and Planetary Science Letters, 72, 265-277.
  23. Park, J-.B., Park, K.H., Cho, D.-L., and Koh, G.-W., 1999, Petrochemical Classification of the Quaternary Volcanic Rocks in Cheju Island, Korea. Journal of the Geological Society of Korea, 35, 253-264 (in Korean with English abstract).
  24. Passchier, C. and Trouw, R., 1996. Micro-Tectonics. Springer-Verlag, Berlin. 289p.
  25. Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy 12, 646p.
  26. Sager, W.W., Handschumacher, D.W., Hilde, T.W.C., and Bracey, D.R., 1988, Tectonic evolution of the northern Pacific plate and Pacific-Farallon-Izanagi triple junction in the late Jurassic and early Cretaceous. Tectonophysics, 155, 345-364. https://doi.org/10.1016/0040-1951(88)90274-0
  27. Sibuet, J.C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.P., Hilde, T.W.C., Kimura, M., Chiao, L.Y., Marsset, B., Muller, C., and Stephan, J.F., 1987, Back arc extension in the Okinawa Trough. Journal of Geophysical Research- Solid Earth and Planets, 92, 14041. https://doi.org/10.1029/JB092iB13p14041
  28. Steinberger, B. and Gaina, C., 2007, Plate tectonic reconstructions predict part of Hawaiian hotspot track to be preserved in Bering Sea. Geology, 35, 407-410. https://doi.org/10.1130/G23383A.1
  29. Szabo, C. and Bodnar, R.J., 1996, Changing magma ascent rates in the Nógrád-Gömör Volcanic Field Northern Hungary/ Southern Slovakia: evidence from CO2-rich fluid inclusions in metasomatized upper mantle xenoliths. Petrology, 4, 221-230.
  30. Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K., and Lee, M.W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.
  31. Vauchez, A. and Garrido, C.J., 2001, Seismic properties of an asthenospherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth and Planetary Science Letters, 192, 235-249. https://doi.org/10.1016/S0012-821X(01)00448-4
  32. Viti, C. and Frezzotti, M.L., 2000, Re-equilibration of glass and $CO_2$ inclusions in xenolith olivine: a TEM study. American mineralogists, 85, 1390-1396. https://doi.org/10.2138/am-2000-1007
  33. Woo Y., Yang K., Kil Y., Yun S-H., and Arai S., 2014, Silica-and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments? Lithos, 208-209, 312-323. https://doi.org/10.1016/j.lithos.2014.09.003
  34. Xu, Y.G., Menzies, M.A., Matthew, F., Huang, X.L., Liu, Y., and Chen, X.M., 2003, "Reactive" harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning. Geochimica et Cosmochimica Acta, 67, 487-505. https://doi.org/10.1016/S0016-7037(02)01089-X
  35. Yang, K., Hidas, K., Falus, G., Szabó, C., Nam, B., Kovacs, I., and Hwang, H., 2010, Relation between mantle shear zone deformation and metasomatism in spinel peridotite xenoliths of Jeju Island (South Korea): evidence from olivine CPO and trace elements. Journal of Geodynamics, 50, 424-440. https://doi.org/10.1016/j.jog.2010.05.005
  36. Yang, K., Arai, S., Yu, J., Yun, S.H,, Kim, J.S., and Hwang, J.Y., 2012a, Gabbroic xenoliths and megacrysts in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea: The implications for metasomatism of the lower continental crust. Lithos, 142-143, 201-215. https://doi.org/10.1016/j.lithos.2012.03.006
  37. Yang, K., Szabó, C., Arai, S., Yu, J., and Jeong, H., 2012b, Silica enrichment on Group II xenoliths by evolved alkali basalt from Jeju Island, South Korea: implication for modification of intraplate deep-seated rocks. Mineralogy and Petrology, 106, 107-130. https://doi.org/10.1007/s00710-012-0222-x
  38. Yu, J., Yang, K., Jeong, H., and Kil, Y.W., 2012, Petrology of pyroxenite xenoliths enclosed in basaltic rocks from Shinsanri of Jeju Island. Journal of the Geological Society of Korea, 48, 299-312.
  39. Yun, S.H., Koh, J.S., and Park, J.M., 2002, Petrology of the Taeheung-ri Lava in Southeastern Jeju Island. Journal of Petrological Society of Korea, 11, 17-29 (in Korean with English abstract).

과제정보

연구 과제 주관 기관 : 부산대학교