DOI QR코드

DOI QR Code

Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. II. Electrolyte

PEO 처리조건에 따른 마그네슘 합금 AZ31과 AZ91의 산화표면피막특성에 대한 연구. II. 전해질의 영향

Ham, Jae-Ho;Jeon, Min-Seok;Kim, Yong-Nam;Shin, Hyun-Gyoo;Kim, Sung Youp;Kim, Bae-Yeon
함재호;전민석;김용남;신현규;김성엽;김배연

  • Received : 2016.03.11
  • Accepted : 2016.03.16
  • Published : 2016.04.01

Abstract

Effect of electrolyte composition and concentration on PEO coating layer were investigated. Mg alloy, Surface of AZ31 and AZ91 were oxidized using PEO with different electrolyte system, Na-P and Na-Si. and applied voltage and concentration. We measured thickness, roughness, X-ray crystallographic analysis and breakdown voltage of the oxidized layer. When increasing concentration of electrolyte, the thickness of oxide layer also increased too. And roughness also increased as concentration of electrolyte increasing. Breakdown voltage of coated layer showed same behavior, the voltage goes high as increasing thickness of coating layer, as increasing concentration of electrolyte, and increasing applied voltage of PEO. $Mg_2SiO_4$ phase were observed as well as MgO.

Keywords

PEO;crystal structure;electrolyte;breakdown voltage

References

  1. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surface and Coatings Technology, 122, 73 (1999). [DOI: http://dx.doi.org/10.1016/S0257-8972(99)00441-7] https://doi.org/10.1016/S0257-8972(99)00441-7
  2. B. L. Mordike, and T. Ebert, Materials Science and Engineering, A302, 37 (2001). [DOI: http://dx.doi.org/10.1016/S0921-5093(00)01351-4] https://doi.org/10.1016/S0921-5093(00)01351-4
  3. H. F. Guo, M. Z. An, S. Xu, and H. Huo, Thin Solid Films, 485, 53 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.03.050] https://doi.org/10.1016/j.tsf.2005.03.050
  4. H. F. Guo, and M. Z. An, Applied Surface Science, 246, 229 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.11.031] https://doi.org/10.1016/j.apsusc.2004.11.031
  5. R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G. E Thompson, Corrosion Science, 50, 1744 (2008). [DOI: http://dx.doi.org/10.1016/j.corsci.2008.03.002] https://doi.org/10.1016/j.corsci.2008.03.002
  6. A. V. Timoshenko, and Y. V. Magurova, Surface and Coatings Technology, 199, 135 (2005). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2004.09.036] https://doi.org/10.1016/j.surfcoat.2004.09.036
  7. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, and T. Xu, Applied Surface Science, 252, 345 (2005). [DOI: http://dx.doi.org/10.1016/j.apsusc.2005.01.007] https://doi.org/10.1016/j.apsusc.2005.01.007
  8. Q. Cai, L. Wang, B. Wei, and Q. Liu, Surface and Coatings Technology, 200, 3727 (2006). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2005.05.039] https://doi.org/10.1016/j.surfcoat.2005.05.039
  9. H. Y. Hsiao, H. C. Tsung, and W. T. Tsai, Surface and Coatings Technology, 199, 127 (2005). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2004.12.010] https://doi.org/10.1016/j.surfcoat.2004.12.010
  10. S. Verdier, M. Boinet, S. Maximovitch, and F. Dalard, Corrosion. Science., 47, 1427 (2005). [DOI: http://dx.doi.org/10.1016/j.corsci.2004.07.038] https://doi.org/10.1016/j.corsci.2004.07.038
  11. Y. G. Ko, E. S. Lee, and D. H. Shin, Journal of Alloys and Compounds, 586, S357 (2014). [DOI: http://dx.doi.org/10.1016/j.jallcom.2013.03.015] https://doi.org/10.1016/j.jallcom.2013.03.015
  12. Y. Ma, H. Hu, D. Northwood, and X. Nie, Journal of Materials Processing Technology, 182, 58 (2007). [DOI: http://dx.doi.org/10.1016/j.jmatprotec.2006.07.007] https://doi.org/10.1016/j.jmatprotec.2006.07.007
  13. H. F. Guo, M. Z. An, H. B. Huo, S. Xu, and L. J. Wu, Applied Surface Science, 252, 7911 (2006). [DOI: http://dx.doi.org/10.1016/j.apsusc.2005.09.067] https://doi.org/10.1016/j.apsusc.2005.09.067
  14. D. K. Lee, Y. H. Kim, H. Park, U. C. Jung, and W. S Chung, Journal of Korea Institute Surface Engineering, 42, 3 (2009).

Acknowledgement

Supported by : 인천대학교