Influence of Shell on the Electrochemical Properties of Si Nanoparticle

Si 나노입자에서 shell이 전기화학적 특성에 미치는 영향

  • Received : 2016.03.11
  • Accepted : 2016.03.24
  • Published : 2016.04.01


Effects of $SiO_x$ or C shells on electrochemical properties of Si nanoparticles were investigated. $SiO_x$ shells with thickness of 10~15 nm were formed on homogeneously crystalline Si nanoparticles. Incase of Si-C nanoparticles, there were 30~40 layers of C with a number of defects. Li-ion batteries were fabricated with the above-mentioned nanoparticles, and their electrochemical properties were measured. Pristine Si shows a high IRC (initial reversible capacity) of 2,517 mAh/g and ICE (initial columbic efficiency) of 87%, but low capacity retention of 22%, respectively. $SiO_x$ shells decreased IRC (1,534 mAh/g) and ICE (54%), while the retention increased up to 65%, which can be explained by irreversible phases such as $LiO_2$ and $Li_2SiO_3$. C shells exhibited no differences in IRC and ICE compared to the pristine Si but an enhanced retention of 54%, which might be from proper defect structures.


Si nanoparticle;$Si-SiO_x$ nanoparticle;Si-C nanoparticle;Electrochemical properties


  1. L. F. Cui, L. Hu, J. W. Choi, and Y. Cui, ACS Nano., 47, 3671 (2010). [DOI:]
  2. C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Chem. Soc., 39, 3115 (2010). [DOI:]
  3. H. Kim and Y. K. Sun, Materials Today., 17, 285 (2014). [DOI:]
  4. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano., 6, 1522 (2012). [DOI:]
  5. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008). [DOI:]
  6. H. Kim, M. Seo, M. H. Park, and J. Cho, Angew. Chem. Int. Ed., 49, 2146 (2010). [DOI:]
  7. X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, Adv. Energy Mater., 1, 1079 (2011). [DOI:]
  8. Q. Si, M. Matsu, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki, and N. Imanishi, J. Power Sources., 241, 744 (2013).[DOI:]
  9. T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, and I. Nakabayashi, J. Solid State Chem., 153, 386 (2000). [DOI:]
  10. K. Homma, M. Kambara, and T. Yoshida, Sci. Technol. Adv. Mater., 15, 1 (2014). [DOI:]
  11. B. Y. Jang, J. S. Lee, C. H. Ko, J. Korean Phys. Soc., 57, 1029 (2014).
  12. J. Yang, Y. Takeda, N. Lmanish, C. Capiglia, and J. Y. Xie, Solid State Ionics., 152, 125 (2002). [DOI:]
  13. M. N. Obrovac and L. Christensen, Electrochem and Solid-State Lett., 7, A93 (2004). [DOI:]
  14. B. A. Boukamp, G. C. Lesh, and R. A. Huggins, J. EIectrochem. Soc., 128, 725 (1981). [DOI:]
  15. J. Guo, A. Suna, X. Chena, C. Wang, and A. Manivannan, Electrochimica Acta., 56, 3981 (2011). [DOI:]
  16. D. Dees, E. Gunen, D. Abraham, A. Jansen and J. Prakash, J. Electrochem soc., 152, A1409 (2005). [DOI:]

Cited by

  1. Stepwise carbon growth on Si/SiO x core-shell nanoparticles and its effects on the microstructures and electrochemical properties for high-performance lithium-ion battery’s anode vol.222, 2016,


Supported by : 충남대학교, 한국에너지기술연구원