DOI QR코드

DOI QR Code

Influence of Shell on the Electrochemical Properties of Si Nanoparticle

Si 나노입자에서 shell이 전기화학적 특성에 미치는 영향

  • Received : 2016.03.11
  • Accepted : 2016.03.24
  • Published : 2016.04.01

Abstract

Effects of $SiO_x$ or C shells on electrochemical properties of Si nanoparticles were investigated. $SiO_x$ shells with thickness of 10~15 nm were formed on homogeneously crystalline Si nanoparticles. Incase of Si-C nanoparticles, there were 30~40 layers of C with a number of defects. Li-ion batteries were fabricated with the above-mentioned nanoparticles, and their electrochemical properties were measured. Pristine Si shows a high IRC (initial reversible capacity) of 2,517 mAh/g and ICE (initial columbic efficiency) of 87%, but low capacity retention of 22%, respectively. $SiO_x$ shells decreased IRC (1,534 mAh/g) and ICE (54%), while the retention increased up to 65%, which can be explained by irreversible phases such as $LiO_2$ and $Li_2SiO_3$. C shells exhibited no differences in IRC and ICE compared to the pristine Si but an enhanced retention of 54%, which might be from proper defect structures.

Keywords

Si nanoparticle;$Si-SiO_x$ nanoparticle;Si-C nanoparticle;Electrochemical properties

References

  1. L. F. Cui, L. Hu, J. W. Choi, and Y. Cui, ACS Nano., 47, 3671 (2010). [DOI: http://dx.doi.org/10.1021/nn100619m] https://doi.org/10.1021/nn100619m
  2. C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Chem. Soc., 39, 3115 (2010). [DOI: http://dx.doi.org/10.1039/b919877f] https://doi.org/10.1039/b919877f
  3. H. Kim and Y. K. Sun, Materials Today., 17, 285 (2014). [DOI: http://dx.doi.org/10.1016/j.mattod.2014.05.003] https://doi.org/10.1016/j.mattod.2014.05.003
  4. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano., 6, 1522 (2012). [DOI: http://dx.doi.org/10.1021/nn204476h] https://doi.org/10.1021/nn204476h
  5. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008). [DOI: http://dx.doi.org/10.1002/anie.200702505] https://doi.org/10.1002/anie.200702505
  6. H. Kim, M. Seo, M. H. Park, and J. Cho, Angew. Chem. Int. Ed., 49, 2146 (2010). [DOI: http://dx.doi.org/10.1002/anie.200906287] https://doi.org/10.1002/anie.200906287
  7. X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, Adv. Energy Mater., 1, 1079 (2011). [DOI: http://dx.doi.org/10.1002/aenm.201100426] https://doi.org/10.1002/aenm.201100426
  8. Q. Si, M. Matsu, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki, and N. Imanishi, J. Power Sources., 241, 744 (2013).[DOI: http://dx.doi.org/10.1016/j.jpowsour.2013.05.090] https://doi.org/10.1016/j.jpowsour.2013.05.090
  9. T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, and I. Nakabayashi, J. Solid State Chem., 153, 386 (2000). [DOI: http://dx.doi.org/10.1006/jssc.2000.8787] https://doi.org/10.1006/jssc.2000.8787
  10. K. Homma, M. Kambara, and T. Yoshida, Sci. Technol. Adv. Mater., 15, 1 (2014). [DOI: http://dx.doi.org/10.1088/1468-6996/15/2/025006] https://doi.org/10.1088/1468-6996/15/2/025006
  11. B. Y. Jang, J. S. Lee, C. H. Ko, J. Korean Phys. Soc., 57, 1029 (2014).
  12. J. Yang, Y. Takeda, N. Lmanish, C. Capiglia, and J. Y. Xie, Solid State Ionics., 152, 125 (2002). [DOI: http://dx.doi.org/10.1016/S0167-2738(02)00362-4] https://doi.org/10.1016/S0167-2738(02)00362-4
  13. M. N. Obrovac and L. Christensen, Electrochem and Solid-State Lett., 7, A93 (2004). [DOI: http://dx.doi.org/10.1149/1.1652421] https://doi.org/10.1149/1.1652421
  14. B. A. Boukamp, G. C. Lesh, and R. A. Huggins, J. EIectrochem. Soc., 128, 725 (1981). [DOI: http://dx.doi.org/10.1149/1.2127495] https://doi.org/10.1149/1.2127495
  15. J. Guo, A. Suna, X. Chena, C. Wang, and A. Manivannan, Electrochimica Acta., 56, 3981 (2011). [DOI: http://dx.doi.org/10.1016/j.electacta.2011.02.014] https://doi.org/10.1016/j.electacta.2011.02.014
  16. D. Dees, E. Gunen, D. Abraham, A. Jansen and J. Prakash, J. Electrochem soc., 152, A1409 (2005). [DOI: http://dx.doi.org/10.1149/1.1928169] https://doi.org/10.1149/1.1928169

Cited by

  1. Stepwise carbon growth on Si/SiO x core-shell nanoparticles and its effects on the microstructures and electrochemical properties for high-performance lithium-ion battery’s anode vol.222, 2016, https://doi.org/10.1016/j.electacta.2016.11.006

Acknowledgement

Supported by : 충남대학교, 한국에너지기술연구원