DOI QR코드

DOI QR Code

Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode

층상계 산화물 양극의 4.6V 고전압 특성 향상에서의 Sulfone 첨가제의 역할

Kang, Joonsup;Nam, Kyung-Mo;Hwang, Eui-Hyeong;Kwon, Young-Gil;Song, Seung-Wan
강준섭;남경모;황의형;권영길;송승완

  • Received : 2015.09.01
  • Accepted : 2016.01.12
  • Published : 2016.02.29

Abstract

Capacity of layered lithium nickel-cobalt-manganese oxide ($LiNi_{1-x-y}Co_xMn_yO_2$) cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. $Li/Li^+$, but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of $198-173mAhg^{-1}$ over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.

Keywords

Lithium-ion Battery;$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode;Sulfone additive;High-voltage;Surface film

References

  1. S.-W. Song, G. V. Zhuang and P. N. Ross, 'Surface film formation on $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathodes using attenuated total reflection IR spectroscopy', J. Electrochem. Soc., 151, A1162 (2004). https://doi.org/10.1149/1.1763771
  2. G. V. Zhuang and P. N. Ross, 'Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy', Electrochem. Solid-State Lett., 6, A136 (2003). https://doi.org/10.1149/1.1575594
  3. G. Socrates, "Infrared Characteristic Group Frequencies, Table and Charts, Second Edition", John Wiley & Sons, New York, (1994).
  4. S.-W. Song and S.-W. Baek, 'Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries', Electrochem. Solid-State Lett., 12, A23 (2009). https://doi.org/10.1149/1.3028216
  5. N. V. Kosova, E. T. Devyatkina and V. V. Kaichev, 'Mixed layered Ni-Mn-Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition', J. Power Sources, 174, 735 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.109
  6. J. F. Moulder, J. Chastain, and R. C. King, "Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data", 82, Physical Electronics, Inc., Chanhassen, MN (1995).
  7. E. Regan, T. Groutso, J. B. Metson, R. Steiner, B. Ammundsen, D. Hassell and P. Pickering, 'Surface and bulk composition of lithium manganese oxides', Surf. Interface Anal., 1068, 1064 (1999).
  8. R. A. Quinlan, Y.-C. Lu, Y. Shao-Horn and A. N. Mansour, 'XPS studies of surface chemistry changes of $LiNi_{0.5}Mn_{0.5}O_2$ electrodes during high-voltage cycling', J. Electrochem. Soc., 160, A669 (2013). https://doi.org/10.1149/2.069304jes
  9. T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa and H. Aoyama, 'Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries', J. Electrochem. Soc., 156, A483 (2009). https://doi.org/10.1149/1.3111904
  10. Y.-M. Lee, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim and S.-W. Song, 'Interfacial origin of performance improvement and fade for 4.6 V $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ battery cathodes', J. Phys. Chem. C, 118, 10631 (2014).
  11. H. Q. Pham, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, H. M, Jung and S.-W. Song, 'Performance enhancement of 4.8 V $Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$ battery cathode using fluorinated linear carbonate as a high-voltage additive', J. Electrochem. Soc., 161, A2002 (2014). https://doi.org/10.1149/2.1141412jes
  12. Y. Watanabe, S. Kinoshita, S. Wada, K. Hoshino, H. Morimoto and S. Tobishima, 'Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells', J. Power Sources, 179, 770-779 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.006
  13. K. Xu and C. A. Angell, 'High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone', J. Electrochem. Soc., 145, 70 (1998). https://doi.org/10.1149/1.1838213
  14. N. Shao, X. Sun, S. Dai and D. Jiang, 'Oxidation potentials of functionalized sulfone solvents for highvoltage Li-ion batteries: A computational study', J. Phys. Chem., 116, 3235 (2012). https://doi.org/10.1021/jp211619y
  15. K. Xu and C. A. Angell, 'Sulfone-based electrolytes for lithium-ion batteries', J. Electrochem. Soc., 149, A920 (2002). https://doi.org/10.1149/1.1483866
  16. S. Tan, Y. J. Ji, Z. R. Zhang, and Y. Yang, 'Recent progress in research on high-voltage electrolytes for lithium-ion batteries', Chem phys chem, 15, 1956 (2014). https://doi.org/10.1002/cphc.201402175
  17. L. Xue, S.-Y. Lee, Z. Zhao and C. A. Angell, 'Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries', J. Power Sources, 295, 190 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.112
  18. R. Wagner, S. Brox, J. Kasnatscheew, D. R. Gallus, M. Amereller, I. Cekic-Laskovic and M. Winter, 'Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries', Electrochem. Commun., 40, 80 (2014). https://doi.org/10.1016/j.elecom.2014.01.004
  19. A. Manthiram and J. Kim, 'Low temperature synthesis of insertion oxides for lithium batteries', Chem. Mater., 10, 2895 (1998). https://doi.org/10.1021/cm980241u
  20. F. Amalraj, M. Talianker, B. Markovsky, D. Sharon, L. Burlaka, G. Shafir, E. Zinigrad, O. Haik, D. Aurbach, J. Lampert, M. Schulz-Dobrick and A. Garsuch, 'Study of the lithium-rich integrated compound $xLi_2MnO_3{\cdot}(1-x)LiMO_2$ (x around 0.5;M= Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells', J. Electrochem. Soc., 160, A324 (2012). https://doi.org/10.1149/2.070302jes
  21. R. Aroca, M. Nazri, G. A. Nazri, A. J. Camaro and M. Trsic, 'Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries', J. Solution Chem., 29, 1047 (2000). https://doi.org/10.1023/A:1005151220893
  22. S. Yamada, M. Fujiwara and M. Kanda, 'Synthesis and properties of $LiNiO_2$ as cathode material for secondary batteries', J. Power Sources, 54, 209 (1995). https://doi.org/10.1016/0378-7753(94)02068-E
  23. P. Kalyani and N. Kalaiselvi, 'Various aspects of $LiNiO_2$ chemistry: A review', Sci. Technol. Adv. Mater., 6, 689 (2005). https://doi.org/10.1016/j.stam.2005.06.001
  24. D. H. Jang, Y. J. Shin and S. M. Oh, 'Dissolution of spinel oxides and capacily losses in 4 V $Li/Li_xMn_2O_4$ cells', J. Electrochem. Soc., 143, 2204 (1996). https://doi.org/10.1149/1.1836981
  25. A. R. Armstrong, A. J. Paterson, A. D. Robertson, and P. G. Bruce, 'Nonstoichiometric layered $Li_xMn_yO_2$ with a high capacity for lithium intercalation/deintercalation', Chem. Mater., 14, 710 (2002). https://doi.org/10.1021/cm010382n
  26. T. Liu, S.-X. Zhao, K. Wang and C.-W. Nan, 'CuO-coated $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ cathode material with improved cycling performance at high rates', Electrochim. Acta, 85, 605 (2012). https://doi.org/10.1016/j.electacta.2012.08.101
  27. Y. Huang, F.-M. Jin, F.-J. Chen and L. Chen, 'Improved cycle stability and high-rate capability of $Li_3VO_4$-coated $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ cathode material under different voltages', J. Power Sources, 256, 1 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.003
  28. W. Liu, M. Wang, X. L. Gao, W. Zhang, J. Chen, H. Zhou and X. Zhang, 'Improvement of the hightemperature, high-voltage cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode with $TiO_2$ coating', J. Alloys Compds., 543, 181 (2012). https://doi.org/10.1016/j.jallcom.2012.07.074
  29. J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries', Chem. Mater., 22, 587 (2010). https://doi.org/10.1021/cm901452z
  30. Y. Nishida, K. Nakane and T. Satoh, 'Synthesis and properties of gallium-doped $LiNiO_2$ as the cathode material for lithium secondary batteries', J. Power Sources, 68, 561 (1997). https://doi.org/10.1016/S0378-7753(97)02535-4
  31. Y. Bai, X. Wang, S. Yang, X. Zhang, X. Yang, H. Shu and Q. Wu, 'The effects of $FePO_4$-coating on high-voltage cycling stability and rate capability of $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$', J. Alloys Compds., 541, 125 (2012). https://doi.org/10.1016/j.jallcom.2012.06.101
  32. J.-Z. Kong, C. Ren, G.-A. Tai, X. Zhang, A.-D. Li, D. Wu, H. Li and F. Zhou, 'Ultrathin ZnO coating for improved electrochemical performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material', J. Power Sources, 266, 433 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.027
  33. H.-J. Noh, S. Youn, C. S. Yoon and Y.-K. Sun, 'Comparison of the structural and electrochemical properties of layered $Li[Ni_xCo_yMn_z]O2$ (x =1/4 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries', J. Power Sources, 233, 121 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063
  34. M. Moshkovich, M. Cojocaru, H. E. Gottlieb and D. Aurbach, 'The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS', J. Electroanal. Chem., 497, 84 (2001). https://doi.org/10.1016/S0022-0728(00)00457-5
  35. H.-K. Park, 'The research and development trend of cathode materials in lithium ion battery', J. Korean Electrochem. Soc., 11, 197 (2008). https://doi.org/10.5229/JKES.2008.11.3.197
  36. A. Abouimrane, I. Belharouak, and K. Amine, 'Sulfonebased electrolytes for high-voltage Li-ion batteries', Electrochem. Commun., 11, 1073 (2009). https://doi.org/10.1016/j.elecom.2009.03.020

Acknowledgement

Supported by : 산업통산자원부, 한국연구재단, 충남대학교