DOI QR코드

DOI QR Code

Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery

바나듐 레독스 흐름전지용 이온교환막의 수명 예측

Cho, Kook-Jin;Park, Jin-Soo
조국진;박진수

  • Received : 2015.12.11
  • Accepted : 2016.01.05
  • Published : 2016.02.29

Abstract

Vanadium redox flow battery (VRFB) is an energy conversion device in which charging and discharging are alternatively carried out by oxidation and reduction reactions of vanadium ions with different oxidation states. VRFB consists of electrolyte, electrode, ion-exchange membrane, etc. The role of ion-exchange membranes in VRFB separates anolyte and catholyte and provides a high conductivity to hydrogen ions. Recently much attention has been devoted to develop ideal ion-exchange membranes for VRFB. A number of developed ion-exchange membranes should be evaluated to find out ideal ion-exchange membranes for VRFB. Long-term durability test is a crucial characterization of ion-exchange membranes for commercialization, but is very time-consuming. In this study, the life time prediction protocol of ion-exchange membranes in VRFB cell tests was developed through short-term single cell performance evaluation (real total operation time, 87.5 hrs) at three different current densities. We confirmed a decrease in test time up to 96.2% of real durability tests (expected total operation time, 2,296 hrs) and 5~6% of relative error discrepancy between the predicted and the real life time in a unit cell.

Keywords

Redox flow batteries;Ion exchange membranes;Life time prediction

References

  1. W. Dai, L. Yu, Z. Li, J. Yan, L. Liu, J. Xi, and X. Qiu, 'Sulfonated Poly (Ether Ether Ketone)/Graphene composite membrane for vanadium redox flow battery', Electrochim. Acta, 132, 200 (2014). https://doi.org/10.1016/j.electacta.2014.03.156
  2. X. Teng, J. Dai, F. Bi, and G. Yin, 'Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery', J. Power Sources, 272, 113 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.060
  3. B. Yin, Z. Li, W. Dai, L. Wang, L. Yu, and J. Xi, 'Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery', J. Power Sources, 285, 109 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.102
  4. B. Hwang, K. Kim, 'Redox pairs in redox flow batteries', J. Korean Electrochem. Soc., 16, 99 (2013) https://doi.org/10.5229/JKES.2013.16.3.99
  5. S. Liu, L. Wang, Y. Ding, B. Liu, X. Han, and Y. Song, 'Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications', Electrochim. Acta, 130, 90 (2014). https://doi.org/10.1016/j.electacta.2014.02.144
  6. Y. Li, H. Zhang, H. Zhang, J. Cao, W. Xu, and X. Li, 'Hydrophilic porous poly (sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application', J. Membrane Sci., 454, 478 (2014). https://doi.org/10.1016/j.memsci.2013.12.015
  7. S. K. Park, J. Shim, J. H. Yang, C. S. Jin, B. S. Lee, and J. D. Jeon, 'The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery', Electrochim. Acta, 116, 447 (2014). https://doi.org/10.1016/j.electacta.2013.11.073
  8. A. Chromik, A. R. dos Santos, T. Turek, U. Kunz, T. Haring, and J. Kerres, 'Stability of acid-excess acid-base blend membranes in all-vanadium redox-flow batteries', J. Membr. Sci., 476, 148 (2015). https://doi.org/10.1016/j.memsci.2014.11.036
  9. X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, and Y. Dong, '$PbO_2$-modified graphite felt as the positive electrode for an all-vanadium redox flow battery', J. Power Sources, 250, 274 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.021
  10. Z. Li, W. Dai, L. Yu, J. Xi, X. Qiu, and L. Chen, 'Sulfonated poly (ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery', J. Power Sources, 257, 221 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.127
  11. J. Xi, Z. Wu, X. Qiu, and L. Chen, 'Nafion/$SiO_2$ hybrid membrane for vanadium redox flow battery', J. Power Sources, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  12. J. Kim, J. D. Jeon, and S. Y. Kwak, 'Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery', Electrochem. Commun., 38, 68 (2014). https://doi.org/10.1016/j.elecom.2013.11.002
  13. C. H. Lin, M. C. Yang, and H. J. Wei, 'Amino-silica modified Nafion membrane for vanadium redox flow battery' J. Power Sources, 282, 562 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.102
  14. S. Kim, T. B, Tighe, B. Schwenzer, J. Yan, J. Zhang, J. Liu, Z. Yang, and M. A. Hickner, "Chemical and mechanical degradation of sulfonated poly (sulfone) membranes in vanadium redox flow batteries', J. Appl. Electrochem., 41, 1201 (2011). https://doi.org/10.1007/s10800-011-0313-0
  15. X. Teng, J. Dai, J. Su, and G. Yin, 'Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery', J. Membr. Sci., 476, 20 (2015). https://doi.org/10.1016/j.memsci.2014.11.014

Cited by

  1. Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.107

Acknowledgement

Supported by : 한국에너지기술연구원, 한국연구재단