# Lp-Boundedness for the Littlewood-Paley g-Function Connected with the Riemann-Liouville Operator

Rachdi, Lakhdar Tannech;Amri, Besma;Chettaoui, Chirine

• Accepted : 2015.11.03
• Published : 2016.03.23
• 20 14

#### Abstract

We study the Gauss and Poisson semigroups connected with the Riemann-Liouville operator defined on the half plane. Next, we establish a principle of maximum for the singular partial differential operator $${\Delta}_{\alpha}={\frac{{\partial}^2}{{\partial}r^2}+{\frac{2{\alpha}+1}{r}{\frac{\partial}{{\partial}r}}+{\frac{{\partial}^2}{{\partial}x^2}}+{\frac{{\partial}^2}{{\partial}t^2}}};\;(r,x,t){\in}]0,+{\infty}[{\times}{\mathbb{R}}{\times}]0,+{\infty}[$$. Later, we define the Littlewood-Paley g-function and using the principle of maximum, we prove that for every $p{\in}]1,+{\infty}[$, there exists a positive constant $C_p$ such that for every $f{\in}L^p(d{\nu}_{\alpha})$, $${\frac{1}{C_p}}{\parallel}f{\parallel}_{p,{\nu}_{\alpha}}{\leqslant}{\parallel}g(f){\parallel}_{p,{\nu}_{\alpha}}{\leqslant}C_p{\parallel}f{\parallel}_{p,{\nu}_{\alpha}}$$.

#### Keywords

Riemann-Liouville operator;Fourier transform;Semigroup;Principle of maximum;Littlewood-Paley g-function

#### References

1. A. Achour and K. Trimeche, La g-fonction de Littlewood-Paley associee a un operateur differentiel singulier sur ]0;+${\infty}$[, Ann. Inst. Fourier, Grenoble, 33(1983), 203-226. https://doi.org/10.5802/aif.946
2. B. Amri and L. T. Rachdi, The Littlewood-Paley g-function associated with the Riemann-Liouville operator, Ann. Univ. Paedagog. Crac. Stud. Math., 12(2013), 31-58.
3. B. Amri and L. T. Rachdi, Uncertainty principle in terms of entropy for the Riemann-Liouville operator, Bull. Malays. Math. Sci. Soc., (Accepted papers).
4. B. Amri and L. T. Rachdi, Beckner Logarithmic Uncertainty principle for the Riemann-Liouville operator, Internat. J. Math., 24(9)(2013), 1350070 (29 pages). https://doi.org/10.1142/S0129167X13500705
5. B. Amri and L. T. Rachdi, Calderon-reproducing formula for singular partial differential operators, Integral Transforms Spec. Funct., 25(8)(2014), 597-611. https://doi.org/10.1080/10652469.2014.888807
6. H. Annabi and A. Fitouhi, La g-fonction de Littlewood-Paley associee a une classe d'operateurs differentiels sur ]0;+${\infty}$[ contenant l'operateur de Bessel, C. R. Acad. Sc. Paris, 303(1986), 411-413.
7. C. Baccar, N. B. Hamadi and L. T. Rachdi, Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, Int. J. Math. Math. Sci., 2006(2006), pp 1-26.
8. C. Baccar, N. B. Hamadi and L. T. Rachdi, An analogue of Hardy's theorem and its Lp-version for the Riemann-Liouville transform associated with singular partial differential operators, J. Math. Sci. (Dattapukur), 17(1)(2006), 1-18.
9. N. B. Hamadi and L. T. Rachdi, Weyl Transforms Associated with the Riemann-Liouville Operator, Int. J. Math. Math. Sci., 2006, Article ID 94768, 1-18.
10. C. Baccar, N. B. Hamadi and L. T. Rachdi, Best approximation for Weierstrass transform connected with Riemann-Liouville operator, Commun. Math. Anal., 5, No. 1, (2008) 65-83.
11. C. Baccar and L. T. Rachdi, Spaces of $D_Lp$type and a convolution product associated with the Riemann-Liouville operator, Bull. Math. Anal. Appl., Vol. 1, Iss., 3(2009), 16-41.
12. W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, de Gruyter studies in mathematics 20, walter de Gruyter, Berlin-New York 1995.
13. A. Erdelyi et al., Tables of integral transforms, Mc Graw-Hill Book Compagny., 2, New York 1954.
14. A. Erdelyi., Asymptotic expansions, Dover publications, New-York 1956.
15. J. A. Fawcett, Inversion of n-dimensional spherical averages, SIAM Journal on Applied Mathematics, 45(2)(1985), 336-341. https://doi.org/10.1137/0145018
16. S. Helgason. The Radon Transform. Birkhauser, 2nd edition, 1999.
17. H. Hellsten and L.-E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inverse Problems, 3(1)(1987), 111-124. https://doi.org/10.1088/0266-5611/3/1/013
18. M. Herberthson, A numerical implementation of an inverse formula for CARABAS raw data, Internal Report D30430-3.2, National Defense Research Institude, FOA, Box 1165; S-581 11, Linkoping, 1986.
19. I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Anal. Math., 8(1960/61), 307-336.
20. Kh. Hleili, S. Omri and L. T. Rachdi, Uncertainty principle for the Riemann-Liouville operator, Cubo, 13(3)(2011), 91-115. https://doi.org/10.4067/S0719-06462011000300006
21. N. N. Lebedev, Special Functions and Their Applications, Dover publications, New-York 1972.
22. S. Omri and L. T. Rachdi, An $L^p$ - $L^q$ version of Morgan's theorem associated with Riemann-Liouville transform, Int. J. Math. Anal., 1(17)(2007), 805-824.
23. S. Omri and L. T. Rachdi, Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville Operator, J. Inequal. Pure and Appl. Math., 9, Iss. 3, Art 88 (2008).
24. L. T. Rachdi and A. Rouz, On the range of the Fourier transform connected with Riemann-Liouville operator, Ann. Math. Blaise Pascal, 16(2)(2009), 355-397. https://doi.org/10.5802/ambp.272
25. F. Soltani, Littlewood-Paley g-function in the Dunkl analysis on ${\mathbb{R}}^d$, J. Ineq. Pure and Appl. Math. 6, Issue 3, (2005), Article 84, 13 pp. (electronic).
26. E. M. Stein, Interpolation of linear operator, Trans. Amer. Math. Soc., 83(2)(1956), 482-492. https://doi.org/10.1090/S0002-9947-1956-0082586-0
27. E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Stud., Princeton Univ. Press, Princeton, New Jersey, 63, 1970.
28. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University, New Jersey 1971.
29. K. Stempak, La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C. R. Acad. Sc. Paris, Serie I, Math., 303(1986), 15-18.
30. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge univ. Press., 2nd ed., Cambridge 1959.