DOI QR코드

DOI QR Code

결정화/응집 기법에 의한 구형 에너지 복합체 제조 및 그 열분해 특성

이은애;심홍민;김재경;김현수;구기갑
Lee, Eun-Ae;Shim, Hong-Min;Kim, Jae-Kyeong;Kim, Hyoun-Soo;Koo, Kee-Kahb

  • 투고 : 2015.12.07
  • 심사 : 2016.01.13
  • 발행 : 2016.04.10

초록

결정화/응집(crystallization by drowning-out/agglomeration, D/A) 기법으로 구형 DADNE/AP 에너지 복합체를 제조하였다. DADNE 입자와 AP 입자의 응집은 가교액 주입량, 교반 속도, 체류 시간에 영향을 받는 것으로 확인되었다. 복합체의 입도는 가교액의 주입량이 증가할수록 급격하게 증가하였으며, 교반 속도는 빠를수록, 체류 시간은 길수록 복합체의 입도는 증가하다가 감소하는 경향을 보였다. 열중량 분석 결과 DADNE의 첨가는 AP의 저온 분해(Low temperature decomposition, LTD) 영역을 활성화시킴을 알 수 있었다. 순수한 AP는 LTD에서 약 30 wt% 정도 분해됨을 알 수 있었다. 반면, DADNE가 물리적인 혼합에 의해 제조된 복합체의 경우 AP의 70 wt%가 분해되었고, D/A 기법으로 제조된 복합체의 경우 AP의 LTD 분해가 90 wt%까지 증가됨을 알 수 있었다.

키워드

Ammonium perchlorate;DADNE;drowning-out/agglomeration (D/A);thermal decomposition

참고문헌

  1. A. Davenas, Solid Rocket Propulsion Technology, Pergamon Press Inc. NY, USA (1993).
  2. Z. Zhou, S. Tian, D. Zeng, G. Tang, and C. Xie, MOX (M=Zn,Co,Fe)/AP shell-core nanocomposites for self-catalytical decomposition of ammonium perchlorate, J. Alloy. Compd., 513, 213-219 (2012). https://doi.org/10.1016/j.jallcom.2011.10.021
  3. C. Wu, K. Sullivan, S. Chowdhury, G. Jian, L. Zhou, and M. R. Zachariah, Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers, Adv. Funct. Mater., 22, 78-85 (2012). https://doi.org/10.1002/adfm.201100479
  4. E. Alizadeh-Gheshlaghi, B. Shaabani, A. Khodayari, Y. Azizian-Kalandaragh, and R. Rahimi, Investigation of the catalytic activity of nano-sized CuO, $Co_3O_4$ and $CuCo_2O_4$ powders on thermal decomposition of ammonium perchlorate, Powder Technol., 217, 330-339 (2012). https://doi.org/10.1016/j.powtec.2011.10.045
  5. R. Dubey, P. Srivastava, I. P. S. Kapoor, and G. Singh, Synthesis, characterization and catalytic behavior of Cu nanoparticles on the thermal decomposition of AP, HMX, NTO and composite solid propellants, Part 83, Thermochim. Acta, 549, 102-109 (2012). https://doi.org/10.1016/j.tca.2012.09.016
  6. F.-Q. Zhao, P. Chen, and S.-W. Li, Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant, Thermochim. Acta, 416, 75-78 (2004). https://doi.org/10.1016/j.tca.2003.11.034
  7. B. Florczak, A Comparision of Properties of Aluminized composite propellants containing HMX and FOX-7, Cent. Eur. J. Energ. Mat., 5, 103-111 (2008).
  8. H. Bergman, H. Osmark, M-L. Pettersson, U. Bemm, and M. Hihkio, Some Initial Properties and Thermal Stability of FOX-7, IM & EM Technology Symposium, 346 (1999).
  9. B. Florczak, Investigation of an Aluminized Binder/AP Composite Propellant Containing FOX-7, Cent. Eur. J. Energy Mater., 5, 65-75 (2008).
  10. S. Karlsson, H. Ostmark, C. Eldsater, T. Carlsson, H. Bergman, S. Wallin, and A. Pettersson, Detonation and sensitivity properties of FOX-7 and formulations containing FOX-7, Proceedings of the 12th Detonation Symposium. August 11-16, San Diego, California (2002).
  11. N. Latypov, J. Bergman, A. Langlet, U. Wellmar, and U. Bemm, Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene, Tetrahedron, 54, 11525-11536 (1998). https://doi.org/10.1016/S0040-4020(98)00673-5
  12. B. Janzon, H. Bergman, C. Eldsater, C. Lamnevik, and H. Ostmark, FOX-7-a novel, high performance, low vulnerability high explosive for warhead applications, Proceeding of 20th International Symposium on Ballistic, September 23-27, Orlando, Florida (2002).
  13. S. Bhadra, M. Kumar, S. Jain, S. Agrawal, and G. P. Agrawal, spherical crystallization of mefenamic acid, Pharm. Technol., 28, 66-77 (2004).
  14. S. K. Pagire, S. A. Korde, B. R. Whiteside, J. Kendrick, and A. Paradkar, Spherical crystallization of carbamazepine/saccharin co-crystals: Selective agglomeration and purification through surface interactions, Cryst. Growth Des., 13, 4162-4167 (2013). https://doi.org/10.1021/cg400804x
  15. A. Khawam and D. R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110, 17315-17328 (2006). https://doi.org/10.1021/jp062746a
  16. H. L. Friedman, Kinetics of thermal degradation of char-foaming plasctics from thermo-gravimetry-application to a phenolic resin, Polym. Sci., 6C, 183-195 (1963).
  17. T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc., 38, 1881 (1965). https://doi.org/10.1246/bcsj.38.1881
  18. A. W. Coats and J. P. Redfern, Kinetic parameters from thermogravimetric data, Nature, 201, 68 (1964). https://doi.org/10.1038/201068a0
  19. S. Vyazovkin and C. A. Wight, Kinetics of Thermal Decomposition of Cubic Ammonium Perchlorate, Chem. Mater., 11, 3386-3393 (1999). https://doi.org/10.1021/cm9904382
  20. V. V. Boldyrev, Thermal decomposition of ammonium perchlorate, Thermochim. Acta, 443, 1-36 (2006). https://doi.org/10.1016/j.tca.2005.11.038
  21. A. V. Raevsky and G. B. Manelis, On the mechanism of decomposition of ammonium perchlorate, Dokl. Akad. Nauk SSSR, 151, 886-889 (1963).
  22. Z. Yu, L. Chen, L. Lu, X. Yang, and X. Wang, DSC/TG-MS study on in situ catalytic thermal decomposition of ammonium perchlorate over $CoC_2O_4$, Chin. J. Catal., 30, 19-23 (2009). https://doi.org/10.1016/S1872-2067(08)60087-X
  23. A. K. Galwey and M. E. Brown, Application of the Arrhenius equation to solid state kinetics: Can this be justified?, Thermochim. Acta, 386, 91-98 (2002). https://doi.org/10.1016/S0040-6031(01)00769-9
  24. T. Niioka, T. Mitani, H. Miyajima, N. Saito, T. Sohue, K. Ninomiyya, and I. Aoki, The fundamental study of HMX composite propellant and its practical application, National Aerospace Laboratory Report TR-875, Japan (1985).
  25. A, Zenin, HMX and RDX: Combustion mechanism and influence on modern double-base propellant combustion, J. Propul. Power, 11, 752-758 (1995). https://doi.org/10.2514/3.23900

과제정보

연구 과제 주관 기관 : 차세대 융복합 에너지물질 특화 연구센터