The observation of microstructures in the trigonal shape memory alloys

Liu, Tzu-Cheng;Tsou, Nien-Ti

  • Received : 2015.06.06
  • Accepted : 2015.12.15
  • Published : 2016.04.25


The trigonal shape memory alloys (SMAs) have a great potential to be utilized as the applications with special purposes, such as actuators with high operation frequency. Most studies on the trigonal microstructures typically focus on the well-known classic herringbone pattern, but many other patterns are also possible, such as non-classic herringbone, toothbrush and checkerboard patterns. In the current work, a systematic procedure is developed to find all possible laminate twin microstructures by using geometrically linear compatibility theory. The procedure is verified by SEM images with the information of crystallographic axes of unitcells obtained by EBSD, showing good agreement. Many interesting trigonal R-phase patterns are found in the specimen. Then, their incompatibility are analyzed with nonlinear compatibility theory. The relationship between such incompatibility and the likelihood of occurrence of the microstructures is revealed. The current procedure is rapid, computationally efficient and sufficiently general to allow further extension to other crystal systems and materials.


shape memory alloys;compatibility;laminate twins


  1. Ball, J.M. and James, R.D. (1989), Fine phase mixtures as minimizers of energy Analysis and Continuum Mechanics, Springer.
  2. Bhattacharya, K. (2003), Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect, Vol. 2, Oxford University Press.
  3. Fan, G., Zhou, Y., Otsuka, K. and Ren, X. (2006), "Ultrahigh damping in R-phase state of Ti-Ni-Fe alloy", Appl. Phys. Lett., 89(16), 161902.
  4. Goldsztein, G.H. (2001), "The effective energy and laminated microstructures in martensitic phase transformations", J. Mech. Phys. Solid., 49(4), 899-925.
  5. Hane, K.F. and Shield, T. (1999), "Microstructure in the cubic to monoclinic transition in titaniu m-nickel shape memory alloys", Acta Materialia, 47(9), 2603-2617.
  6. Hane, K.F. and Shield, T.W. (2000), "Microstructure in a cubic to orthorhombic transition", J. Elastic. Phys. Sci. Solid., 59(1-3), 267-318.
  7. Kastner, O., Eggeler, G., Weiss, W. and Ackland, G.J. (2011), "Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations", J. Mech. Phys. Solid., 59(9), 1888-1908.
  8. Levitas, V.I., Idesman, A.V. and Preston, D.L. (2004), "Microscale simulation of martensitic microstructure evolution", Phys. Rev. Lett., 93(10), 105701.
  9. Miyazaki, S. and Ishida, A. (1999), "Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films", Mater. Sci. Eng.: A, 273, 106-133.
  10. Murakami, Y., Ohba, T., Morii, K., Aoki, S. and Otsuka, K. (2007), "Crystallography of stress-induced (trigonal) martensitic transformation in Au-49.5 at.% Cd alloy", Acta Materialia, 55(9), 3203-3211.
  11. Otsuka, K. and Ren, X. (2005), "Physical metallurgy of Ti-Ni-based shape memory alloys", Prog. Mater. Sci., 50(5), 511-678.
  12. Roytburd, A., Kim, T., Su, Q., Slutsker, J. and Wuttig, M. (1998), "Martensitic transformation in constrained films", Acta Materialia, 46(14), 5095-5107.
  13. Shu, Y. and Yen, J. (2007), "Pattern formation in martensitic thin films", Appl. Phys. Lett., 91(2), 021908.
  14. Shu, Y. and Yen, J. (2008), "Multivariant model of martensitic microstructure in thin films", Acta Materialia, 56(15), 3969-3981.
  15. Tomozawa, M., Kim, H.Y. and Miyazaki, S. (2006), "Microactuators using R-phase transformation of sputter-deposited Ti-47.3 Ni shape memory alloy thin films", J. Intellig. Mater. Syst. Struct., 17(12), 1049-1058.
  16. Tsou, Chen, C.-H., Chen, C.-S. and Wu, S.-K. (2015), "Classification and analysis of trigonal martensite laminate twins in shape memory alloys", Acta Materialia, 89, 193-204.
  17. Tsou, Chen and Huber, J. (2010), "Compatible domain structures and the poling of single crystal ferroelectrics", Mech. Mater., 42(7), 740-753.
  18. Tsou, Chen and Huber, J. (2010), "Compatible domain arrangements and poling ability in oriented ferroelectric films", Continuum Mech. Thermodyn., 22, 203-219.
  19. Tsou, Huber, J. and Shu, Y. (2012), "A sharp interface model of compatible twin patterns in shape memory alloys", Smart Mater. Struct., 21(9), 094010.
  20. Wu, P., Ma, X., Zhang, J. and Chen, L. (2008), "Phase-field simulations of stress-strain behavior in ferromagnetic shape memory alloy Ni 2 MnGa", J. Appl. Phys., 104(7), 073906.
  21. Zhang, J. and Chen, L. (2005), "Phase-field model for ferromagnetic shape-memory alloys", Philosoph. Magaz. Lett., 85(10), 533-541.
  22. Zhong, Y., Gall, K. and Zhu, T. (2012), "Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars", Acta Materialia, 60(18), 6301-6311.


Supported by : Ministry of Science and Technology (MOST) Taiwan