DOI QR코드

DOI QR Code

Effect of structural voids on mesoscale mechanics of epoxybased materials

  • Tam, Lik-ho ;
  • Lau, Denvid
  • Received : 2015.11.26
  • Accepted : 2015.12.29
  • Published : 2016.04.25

Abstract

Changes in chemical structure have profound effects on the physical properties of epoxy-based materials, and eventually affect the durability of the entire system. Microscopic structural voids generally existing in the epoxy cross-linked networks have a detrimental influence on the epoxy mechanical properties, but the relation remains elusive, which is hindered by the complex structure of epoxy-based materials. In this paper, we investigate the effect of structural voids on the epoxy-based materials by using our developed mesoscale model equipped with the concept of multiscale modeling, and SU-8 photoresist is used as a representative of epoxy-based materials. Developed from the results of full atomistic simulations, the mesoscopic model is validated against experimental measurements, which is suitable to describe the elastic deformation of epoxy-based materials over several orders of magnitude in time- and length scales. After that, a certain quantity of the structure voids is incorporated in the mesoscale model. It is found that the existence of structural voids reduces the tensile stiffness of the mesoscale epoxy network, when compared with the case without any voids in the model. In addition, it is noticed that a certain number of the structural voids have an insignificant effect on the epoxy elastic properties, and the mesoscale model containing structural voids is close to those found in real systems.

Keywords

multiscale modeling;molecular dynamics;mesoscale mechanics;epoxy-based materials;structural voids

References

  1. Adams, R.D., Comyn, J. and Wake, W.C. (1997), Structural Adhesive Joints in Engineering, Springer, Netherlands.
  2. Adler, D.C. and Buehler, M.J. (2013), "Mesoscale mechanics of wood cell walls under axial strain", Soft Matter., 9(29), 7138-7144. https://doi.org/10.1039/c3sm50183c
  3. Allen, M.P. and Tildesley, D.J. (1989), Computer Simulation of Liquids, Oxford university press, New York, NY, USA.
  4. Browning, C.E. and Hartness, J. (1972), The Effects of Moisture on the Properties of High Performance Structural Resins and Composites, ACS Publications, USA.
  5. Buehler, M.J. (2006a), "Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly", J. Mater. Res., 21(08), 1947-1961. https://doi.org/10.1557/jmr.2006.0236
  6. Buehler, M.J. (2006b), "Mesoscale modeling of mechanics of carbon nanotubes: self-assembly, self-folding, and fracture", J. Mater. Res., 21(11), 2855-2869. https://doi.org/10.1557/jmr.2006.0347
  7. Campo, A.D. and Greiner, C. (2007), "SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography", J. Micromech. Microeng., 17(6), R81-R95. https://doi.org/10.1088/0960-1317/17/6/R01
  8. Conradie, E.H. and Moore, D.F. (2002), "SU-8 thick photoresist processing as a functional material for MEMS applications", J. Micromech. Microeng., 12(4), 368-374. https://doi.org/10.1088/0960-1317/12/4/303
  9. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T. (1988), "Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductasetrimethoprim, a drug-receptor system", Proteins: Struct. Func. Bioinformat., 4(1), 31-47. https://doi.org/10.1002/prot.340040106
  10. Dlubek, G., Hassan, E., Krause-Rehberg, R. and Pionteck, J. (2006), "Free volume of an epoxy resin and its relation to structural relaxation: Evidence from positron lifetime and pressure-volume-temperature experiments", Phys. Rev. E, 73(3), 031803.
  11. Feng, R. and Farris, R.J. (2002), "The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating", J. Mater. Sci., 37(22), 4793-4799. https://doi.org/10.1023/A:1020862129948
  12. Feng, R. and Farris, R.J. (2003), "Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings", J. Micromech. Microeng., 13(1), 80. https://doi.org/10.1088/0960-1317/13/1/312
  13. Hammacher, J., Fuelle, A., Flaemig, J., Saupe, J., Loechel, B. and Grimm, J. (2008), "Stress engineering and mechanical properties of SU-8-layers for mechanical applications", Microsys. Technol., 14(9-11), 1515-1523. https://doi.org/10.1007/s00542-007-0534-7
  14. Hsieh, T.T., Tiu, C. and Simon, G.P. (2001), "Correlation between molecular structure, free volume, and physical properties of a wide range of main chain thermotropic liquid crystalline polymers", J. Appl. Polym. Sci., 82(9), 2252-2267. https://doi.org/10.1002/app.2073
  15. Ishiyama, C. and Higo, Y. (2002), "Effects of humidity on Young's modulus in poly (methyl methacrylate)", J. Polym. Sci. Part B: Polym. Phys., 40(5), 460-465. https://doi.org/10.1002/polb.10107
  16. Jeffrey, K. and Pethrick, R.A. (1994), "Influence of chemical structure on free volume in epoxy resins: A positron annihilation study", Eur. Polym. J., 30(2), 153-158. https://doi.org/10.1016/0014-3057(94)90153-8
  17. Kremer, K. and Grest, G.S. (1990), "Dynamics of entangled linear polymer melts: A molecular-dynamics simulation", J. Chem. Phys., 92(8), 5057-5086. https://doi.org/10.1063/1.458541
  18. Laio, A. and Gervasio, F.L. (2008), "Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science", Rep. Prog. Phys., 71(12), 126601. https://doi.org/10.1088/0034-4885/71/12/126601
  19. Lau, D., Broderick, K., Buehler, M.J. and Buyukozturk, O. (2014), "A robust nanoscale experimental quantification of fracture energy in a bilayer material system", Proc. Nat'l Acad. Sci. USA, 111(33), 11990-11995. https://doi.org/10.1073/pnas.1402893111
  20. Lau, D., Buyukozturk, O. and Buehler, M.J. (2012), "Characterization of the intrinsic strength between epoxy and silica using a multiscale approach", J. Mater. Res., 27(14), 1787-1796. https://doi.org/10.1557/jmr.2012.96
  21. Lorenz, H., Despont, M, Fahrni, N., LaBianca, N., Renaud, P. and Vettiger, P. (1997), "SU-8: a low-cost negative resist for MEMS", J. Micromech. Microeng., 7(3), 121-124. https://doi.org/10.1088/0960-1317/7/3/010
  22. Maple, J.R., Dinur, U. and Hagler., A.T. (1988), "Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces", Proc. Nat'l Acad. Sci. USA, 85(15), 5350-5354. https://doi.org/10.1073/pnas.85.15.5350
  23. Mayo, S.L., Olafson, B.D. and Goddard., W.A. (1990), "DREIDING: a generic force field for molecular simulations", J. Phys. Chem., 94(26), 8897-8909. https://doi.org/10.1021/j100389a010
  24. Pethrick, R.A. (1997), "Positron annihilation-A probe for nanoscale voids and free volume?", Prog. Polym. Sci., 22(1), 1-47. https://doi.org/10.1016/S0079-6700(96)00023-8
  25. Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039
  26. Ravikumar, H., Ranganathaiah, C. and Kumaraswamy, G. (2005), "Influence of free volume on the mechanical properties of Epoxy/poly (methylmethacrylate) blends", J. Mater. Sci., 40(24), 6523-6527. https://doi.org/10.1007/s10853-005-1707-3
  27. Sen, D. and Buehler, M.J. (2010), "Atomistically-informed mesoscale model of deformation and failure of bioinspired hierarchical silica nanocomposites", Int. J. Appl. Mech., 2(04), 699-717. https://doi.org/10.1142/S175882511000072X
  28. Shibuya, Y., Zoledziowski, S. and Calderwood, J.H. (1977), "Void formation and electrical breakdown in epoxy-resin", Pow. Apparatus Syst., IEEE Trans., 96(1), 198-207. https://doi.org/10.1109/T-PAS.1977.32324
  29. Sliozberg, Y.R., Mrozek, R.A., Schieber, J.D., Kroger, M., Lenhart, J.L. and Andzelm, J.W. (2013), "Effect of polymer solvent on the mechanical properties of entangled polymer gels: Coarse-grained molecular simulation", Polymer, 54(10), 2555-2564. https://doi.org/10.1016/j.polymer.2013.03.017
  30. Sun, H. (1995), "Ab initio calculations and force field development for computer simulation of polysilanes", Macromolecules, 28(3), 701-712. https://doi.org/10.1021/ma00107a006
  31. Tam, L.-H. and Lau, D. (2014), "A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials", RSC Adv., 4(62), 33074-33081. https://doi.org/10.1039/C4RA04298K
  32. Tam, L.-H. and Lau, D. (2015), "Moisture effect on the mechanical and interfacial properties of epoxybonded material system: An atomistic and experimental investigation", Polymer, 57, 132-142. https://doi.org/10.1016/j.polymer.2014.12.026
  33. Yagyu, H., Hirai, Y., Uesugi, A., Makino, Y., Sugano, K., Tsuchiya, T. and Tabata, O. (2012), "Simulation of mechanical properties of epoxy-based chemically amplified resist by coarse-grained molecular dynamics", Polymer, 53(21), 4834-4842. https://doi.org/10.1016/j.polymer.2012.08.050
  34. Yang, S. and Qu, J. (2012), "Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations", Polymer, 53(21), 4806-4817. https://doi.org/10.1016/j.polymer.2012.08.045
  35. Yarovsky, I. and Evans, E. (2002), "Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins", Polymer, 43(3), 963-969. https://doi.org/10.1016/S0032-3861(01)00634-6

Cited by

  1. Understanding the effect of temperature on the interfacial behavior of CFRP-wood composite via molecular dynamics simulations vol.109, 2017, https://doi.org/10.1016/j.compositesb.2016.10.030
  2. Assessment of High Thermal Effects on Carbon Nanotube (Cnt)- Reinforced Concrete vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29663-5