Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

DOI QR코드

DOI QR Code

Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.

  • 투고 : 2015.01.08
  • 심사 : 2016.02.05
  • 발행 : 2016.05.10

초록

In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.

키워드

plate theory;thermal buckling;functionally graded plate;sandwich plate;volume fraction index

참고문헌

  1. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Envir., 4(2), 59-64.
  2. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  4. Ait Atmane, H., Tounsi, A. and Bernard, F. (2016), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des. (In press)
  5. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  6. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421
  7. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  8. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 569-672.
  9. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  10. Bakora, A. and Tounsi, A. (2015)," Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085
  11. Bateni, M., Kiani, Y. and Eslami, M.R. (2013), "A comprehensive study on stability of FGM plates", Int. J. Mech. Sci., 75, 134-144. https://doi.org/10.1016/j.ijmecsci.2013.05.014
  12. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  13. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0
  14. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  15. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  16. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  17. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  18. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higherorder shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15, 671-703. https://doi.org/10.1177/1099636213498888
  19. Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223
  20. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  21. Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  22. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  23. Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
  24. Bouhadra, A., Benyoucef, S., Tounsi, A., Bernard, F., Bachir Bouiadjra, R. and Houari, M.S.A. (2015), "Thermal buckling response of functionally graded plates with clamped boundary conditions", J. Therm. Stress., 38, 630-650. https://doi.org/10.1080/01495739.2015.1015900
  25. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  26. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14, 5-33. https://doi.org/10.1177/1099636211426386
  27. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  28. Bouremana, M, Houari, M.S.A, Tounsi, A, Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  29. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  30. Brush, D.O. and Almroth, B.O. (1975), Buckling of bars, plates, and shells, McGraw-Hill, New York.
  31. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
  32. Chakraverty, S. and Behera, L. (2015), "Small scale effect on the vibration of non-uniform nanoplates", Struct. Eng. Mech., 55(3), 495-510. https://doi.org/10.12989/sem.2015.55.3.495
  33. Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093
  34. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
  35. Cunedioglu, Y. (2015), "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", Struct. Eng. Mech., 56(6), 1003-1020. https://doi.org/10.12989/sem.2015.56.6.1003
  36. Darilmaz, K., (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395
  37. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  38. Ebrahimi, F. and Dashti, S. (2015)," Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279
  39. Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. https://doi.org/10.12989/scs.2016.20.1.205
  40. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  41. Etemadi, E, Khatibi, AA. and Takaffoli, M. (2009), "3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact", Compos. Struct., 89, 28-34. https://doi.org/10.1016/j.compstruct.2008.06.013
  42. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795-810. https://doi.org/10.1007/s11012-013-9827-3
  43. Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507
  44. Hadji, L. and Adda Bedia, E.A. (2015a), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., 21(3), 273-287. https://doi.org/10.12989/was.2015.21.3.273
  45. Hadji, L. and Adda Bedia, E.A. (2015b), "Analyse of the behavior of Functionally graded beams based on neutral surface position", Struct. Eng. Mech., 55(4), 703-717. https://doi.org/10.12989/sem.2015.55.4.703
  46. Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y. and Adda Bedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315
  47. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  48. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  49. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 467-479.
  50. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct, 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
  51. Jiang, H.J., Dai, H.L. and Li, S.Z. (2015), "Refined plate theory for bending analysis of a HSLA steel plate under 3D temperature field", Appl. Math. Comput., 250, 497-513. https://doi.org/10.1016/j.amc.2014.10.122
  52. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693
  53. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  54. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
  55. Kiani, Y., Bagherizadeh, E. and Eslami, M.R. (2011), "Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three Approximate Analytical Solutions)", J. Appl. Math. Mech., 91(7), 581-593.
  56. Kirkland, B. and Uy, B. (2015), "Behaviour and design of composite beams subjected to flexure and axial load", Steel Compos. Struct., 19(3), 615-633. https://doi.org/10.12989/scs.2015.19.3.615
  57. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  58. Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), "Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vib., 333(12), 2649-2663. https://doi.org/10.1016/j.jsv.2014.01.021
  59. Liang, X., Wu, Z., Wang, L., Liu, G., Wang, Z. and Zhang, W. (2015), "Semi-analytical three-dimensional solutions for the transient response of functionally graded material", ASCE J. Eng. Mech., 141(9), 1943-7889.
  60. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Semi-analytical analysis for multi-directional functionally graded plates: 3-d elasticity solutions", Int. J. Numer. Meth. Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555
  61. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  62. Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic behavior of advanced composite sandwich plates by using a new 6 unknown quasi-3D hybrid type HSDT", Compos. Struct., 126, 132-144. https://doi.org/10.1016/j.compstruct.2015.01.055
  63. Mantari, J.L. and Guedes Soares, C. (2014). "Four-unknown quasi-3D shear deformation theory for advanced composite plates", Compos. Struct., 109, 231-239. https://doi.org/10.1016/j.compstruct.2013.10.047
  64. Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68, 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010
  65. Meksi, A., Benyoucef, S., Houari, M.S.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215
  66. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  67. Miamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R. G., (1999), Functionally graded materials: design, processing and applications, Kluwer Academic Publishers, Boston.
  68. Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
  69. Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006
  70. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
  71. Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
  72. Nguyen-Xuan, H., Tran, L.V., Nguyen-Thoi, T. and Vu-Do, H.C. (2011), "Analysis of functionally graded plates using an edge-based smoothed finite element method", Compos. Struct., 93(11), 3019-2039. https://doi.org/10.1016/j.compstruct.2011.04.028
  73. Ould Larbi, L, Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Bas. Des. Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
  74. Ould Youcef, D., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., 3(4), 177-191. https://doi.org/10.12989/anr.2015.3.4.177
  75. Reddy, J.N. (1984), Energy principles and variational methods in applied mechanics, John Wiley, New York.
  76. Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. https://doi.org/10.12989/sem.2015.53.2.337
  77. Rahimi Pour, H., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  78. Sallai, B., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., 19(4), 829-841. https://doi.org/10.12989/scs.2015.19.4.829
  79. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Tech., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x
  80. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
  81. Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102
  82. Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of non-homogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
  83. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solid., 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  84. Tagrara, S.H., Benachour, A., Bachir Bouiadjra, M. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  85. Tebboune, W., Benrahou, K.H., Houari, M.S.A. and Tounsi, A. (2015), "Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory", Steel Compos. Struct., 18(2), 443-465. https://doi.org/10.12989/scs.2015.18.2.443
  86. Thai, H.T., Vo, T.P., Bui, T.Q. and Nguyen, T.K. (2014), "A quasi-3D hyperbolic shear deformation theory for functionally graded plates", Acta Mech, 225(3), 951-964. https://doi.org/10.1007/s00707-013-0994-z
  87. Thai, HT and Kim, SE. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99,172-180. https://doi.org/10.1016/j.compstruct.2012.11.030
  88. Thai, HT and Choi, DH. (2013), "Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates", Arch. Appl. Mech., 83(12), 1755-1771. https://doi.org/10.1007/s00419-013-0776-z
  89. Thai, HT and Choi, DH. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016
  90. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  91. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  92. Wen, P.H., Sladek, J. and Sladek, V. (2011), "Three-dimensional analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 87(10), 923-942. https://doi.org/10.1002/nme.3139
  93. Xiang, S., Kang, G.W., Yang, M.S. and Zhao, Y. (2013), "Natural frequencies of sandwich plate with functionally graded face and homogeneous core", Compos. Struct., 96, 226-231. https://doi.org/10.1016/j.compstruct.2012.09.003
  94. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48, 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
  95. Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos. Part B, 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014
  96. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on postbuckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loading using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753
  97. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  98. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005
  99. Zidi, M., Tounsi, A., Houari M.S.A., Adda Bedia, E. A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. 1. Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates vol.132, 2017, doi:10.12989/sem.2016.58.3.397
  2. 2. Buckling optimization of variable-stiffness composite panels based on flow field function vol.181, 2017, doi:10.12989/sem.2016.58.3.397
  3. 3. On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, doi:10.12989/sem.2016.58.3.397
  4. 4. Vibro-acoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory vol.180, 2017, doi:10.12989/sem.2016.58.3.397
  5. 5. Nonlinear bending of a two-dimensionally functionally graded beam vol.184, 2018, doi:10.12989/sem.2016.58.3.397
  6. 6. Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories vol.184, 2018, doi:10.12989/sem.2016.58.3.397
  7. 7. Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation vol.40, pp.2, 2017, doi:10.12989/sem.2016.58.3.397
  8. 8. Equivalent property between the one-half order and first-order shear deformation theories under the simply supported boundary conditions vol.131-132, 2017, doi:10.12989/sem.2016.58.3.397
  9. 9. A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates vol.182, 2017, doi:10.12989/sem.2016.58.3.397
  10. 10. Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, doi:10.12989/sem.2016.58.3.397
  11. 11. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method 2017, doi:10.12989/sem.2016.58.3.397
  12. 12. Thermal buckling analysis of functionally graded sandwich plates vol.41, pp.2, 2018, doi:10.12989/sem.2016.58.3.397
  13. 13. Eigenvalue approach to two dimensional coupled magneto-thermoelasticity in a rotating isotropic medium vol.7, 2017, doi:10.12989/sem.2016.58.3.397
  14. 14. A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, doi:10.12989/sem.2016.58.3.397
  15. 15. Exact solutions for coupled responses of thin-walled FG sandwich beams with non-symmetric cross-sections vol.122, 2017, doi:10.12989/sem.2016.58.3.397
  16. 16. An analytical method for free vibration analysis of functionally graded sandwich beams vol.23, pp.1, 2016, doi:10.12989/sem.2016.58.3.397
  17. 17. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment vol.122, pp.9, 2016, doi:10.12989/sem.2016.58.3.397
  18. 18. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment vol.123, pp.5, 2017, doi:10.12989/sem.2016.58.3.397
  19. 19. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, doi:10.12989/sem.2016.58.3.397
  20. 20. A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations 2017, doi:10.12989/sem.2016.58.3.397
  21. 21. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates vol.132, pp.10, 2017, doi:10.12989/sem.2016.58.3.397
  22. 22. A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, doi:10.12989/sem.2016.58.3.397
  23. 23. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, doi:10.12989/sem.2016.58.3.397
  24. 24. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading vol.109, 2017, doi:10.12989/sem.2016.58.3.397
  25. 25. A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, doi:10.12989/sem.2016.58.3.397
  26. 26. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium vol.47, pp.6, 2017, doi:10.12989/sem.2016.58.3.397
  27. 27. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, doi:10.12989/sem.2016.58.3.397
  28. 28. Dynamic buckling of polymer–carbon nanotube–fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments 2017, doi:10.12989/sem.2016.58.3.397
  29. 29. A novel four variable refined plate theory for laminated composite plates vol.22, pp.4, 2016, doi:10.12989/sem.2016.58.3.397
  30. 30. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, doi:10.12989/sem.2016.58.3.397
  31. 31. Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO 2 nanoparticles and fiber reinforced polymer (FRP) layer vol.103, 2017, doi:10.12989/sem.2016.58.3.397
  32. 32. Hygro-thermo-mechanical behavior of classical composites using a new trigonometrical shear strain shape function and a compact layerwise approach vol.160, 2017, doi:10.12989/sem.2016.58.3.397
  33. 33. Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions vol.73, 2017, doi:10.12989/sem.2016.58.3.397
  34. 34. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation vol.72, 2018, doi:10.12989/sem.2016.58.3.397
  35. 35. Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects vol.187, 2018, doi:10.12989/sem.2016.58.3.397
  36. 36. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, doi:10.12989/sem.2016.58.3.397
  37. 37. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, doi:10.12989/sem.2016.58.3.397
  38. 38. Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments vol.124, 2018, doi:10.12989/sem.2016.58.3.397
  39. 39. A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, doi:10.12989/sem.2016.58.3.397
  40. 40. Bending analysis of FGM plates using a sinusoidal shear deformation theory vol.23, pp.6, 2016, doi:10.12989/sem.2016.58.3.397
  41. 41. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature vol.184, 2018, doi:10.12989/sem.2016.58.3.397
  42. 42. A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, doi:10.12989/sem.2016.58.3.397
  43. 43. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium vol.8, 2018, doi:10.12989/sem.2016.58.3.397
  44. 44. Dynamic response of multiple nanobeam system under a moving nanoparticle 2017, doi:10.12989/sem.2016.58.3.397
  45. 45. Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity vol.09, pp.05, 2017, doi:10.12989/sem.2016.58.3.397

과제정보

연구 과제 주관 기관 : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA)