Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams



Ebrahimi, Farzad;Shafiei, Navvab

  • 투고 : 2015.06.19
  • 심사 : 2016.03.13
  • 발행 : 2016.05.25


In the present study, for first time the size dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based on Eringen's nonlocal theory is investigated. It is assumed that the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a power law equation. The governing equations are determined using Hamilton's principle and the generalized differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The accuracy and validity of the results are shown through several numerical examples. In order to display the influence of size effect on first three natural frequencies due to change of some important nanobeam parameters such as material length scale, angular velocity and gradient index of FG material, several diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including rotating parts.


bending vibration;Eringen's nonlocal theory;rotary functionally graded nanobeam;Timoshenko beam theory


  1. Akgoz, B. and Civalek, O. (2012), "Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory", Meccanica, 48(4), 863-873.
  2. Akgoz, B. and Civalek, O. (2014a), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225.
  3. Akgoz, B. and Civalek, O. (2014b), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104.
  4. Alshorbagy, A.E., Eltaher, M. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell., 35(1), 412-425.
  5. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228.
  6. Aranda-Ruiz, A.J., Loya, J. and Fernandez-Saez, J. (2012), "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory", Compos. Struct., 94(9), 2990-3001.
  7. Asgharl, M., Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443.
  8. Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55(4), 871-884.
  9. Bath, J. and Turberfield, A. J. (2007), "DNA nanomachines", Nat Nano, 2, 275-284.
  10. Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238.
  11. Bellman, R., Kashef, B. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52.
  12. Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19(34), 345703.
  13. Chen, L., Nakamura, M., Schindler, T.D., Parker, D. and Bryant, Z. (2012), "Engineering controllable bidirectional molecular motors based on myosin", Nat Nano, 7, 252-256.
  14. Civalek, O. and Akgoz, B. (2013), "Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix", Comput. Mater. Sci., 77, 295-303.
  15. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Modell., 35(5), 2053-2067.
  16. Dehrouyeh-Semnani, A. (2015), "The influence of size effect on flapwise vibration of rotating microbeams", Int. J. Eng. Sci., 94, 150-163.
  17. Dehrouyeh-Semnani, A.M. (2015), "The influence of size effect on flapwise vibration of rotating microbeams", Int. J. Eng. Sci., 94, 150-163.
  18. Dewey, H. and Hodges, M.J.R. (1981), "Free-vibration analysis of rotating beams by a variable-order finite-element method", AIAA, 19(11).
  19. Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1091524.
  20. Ebrahimi, F. and Salari, E. (2015b), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380.
  21. Eltaher, M., Emam, S.A. and Mahmoud F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420.
  22. Eltaher, M., Emam, S.A. and Mahmoud, F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88.
  23. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16.
  24. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.
  25. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248.
  26. Ghadiri, M., Hosseni, S. and Shafiei, N. (2015), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1091527.
  27. Ghadiri, M. and Shafiei, N. (2015), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen‟s theory using differential quadrature method", Microsyst. Technol., doi: 10.1007/s00542-015-2662-9.
  28. Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, doi: 10.1177/1077546315627723.
  29. Ghadiri, M., Shafiei, N. and Safarpour, H. (2016), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen‟s nonlocal elasticity", Microsyst. Technol., doi: 10.1007/s00542-016-2822-6.
  30. Goel, A. and Vogel, V. (2008), "Harnessing biological motors to engineer systems for nanoscale transport and assembly", Nat Nano, 3, 465-475.
  31. Kaya, M.O. (2006), "Free vibration analysis of a rotating Timoshenko beam by differential transform method", Aircraft Eng. Aerospace Technol., 78(3), 194-203.
  32. Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350.
  33. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267.
  34. Lee, L.K., Ginsburg, M.A., Crovace, C., Donohoe, M. and Stock, D. (2010), "Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching", Nature, 466(7309), 996-1000.
  35. Lim, C., Li, C. and Yu, J. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interact. Multiscale Mech., 2, 223-233.
  36. Lubbe, A.S., Ruangsupapichat, N., Caroli, G. and Feringa, B.L. (2011), "Control of rotor function in light-driven molecular motors", J. Organic Chem., 76(21), 8599-8610.
  37. Metin aydogdu, V.T. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656.
  38. Murmu, T. and Adhikari, S. (2010), "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", J. Appl. Phys., 108(12).
  39. Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219(3), 1232-1243.
  40. Narendar, S. and Gopalakrishnan, S. (2011), "Nonlocal wave propagation in rotating nanotube", Result. Phys., 1(1), 17-25.
  41. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199.
  42. Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E: Low-dimensional Systems and Nanostructures, 42, 1944-1949.
  43. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70.
  44. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307.
  45. Shafiei, N., Kazemi, M. and Fatahi, L. (2015), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1128025.
  46. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44.
  47. Shu, C. (2000), Differential quadrature and its application in engineering, Springer.
  48. Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 15, 791-798.
  49. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng., 240(4), 697-705.
  50. Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386.
  51. Tauchert, T. R. (1974), Energy principles in structural mechanics, McGraw-Hill Companies.
  52. Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., Mcguire, A.F., Klebanov, N. and Sykes, E.C.H. (2011), "Experimental demonstration of a single-molecule electric motor", Nat Nano, 6, 625-629.
  53. Van delden, R.A., Ter wiel, M.K.J., Pollard, M.M., Vicario, J., Koumura, N. and Feringa, B.L. (2005), "Unidirectional molecular motor on a gold surface", Nature, 437, 1337-1340.
  54. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18, 105401.

피인용 문헌

  1. 1. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, doi:10.12989/sss.2016.17.5.837
  2. 2. Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory 2017, doi:10.12989/sss.2016.17.5.837
  3. 3. Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams vol.40, pp.5, 2017, doi:10.12989/sss.2016.17.5.837
  4. 4. Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, doi:10.12989/sss.2016.17.5.837
  5. 5. Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory vol.45, 2017, doi:10.12989/sss.2016.17.5.837
  6. 6. Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory vol.30, pp.6, 2017, doi:10.12989/sss.2016.17.5.837
  7. 7. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory vol.24, pp.2, 2018, doi:10.12989/sss.2016.17.5.837