DOI QR코드

DOI QR Code

Ground State Energy of Gd3+ Paramagnetic Ion in PbWO4 : Gd Single Crystal

PbWO4 : Gd 단결정 내의 Gd3+ 상자성 이온에 대한 바닥 상태 에너지

  • Received : 2016.03.20
  • Accepted : 2016.04.06
  • Published : 2016.04.30

Abstract

Ground state energy levels of $Gd^{3+}$ ion (effective spin S = 7/2) in $PbWO_4$ single crystal doped with $Gd^{3+}$ paramagnetic impurity at tetragonal symmetry are calculated with spectroscopic splitting parameters and zero field splitting parameters using by effective spin Hamiltonian. It turns out that the zero field splitting energies of $Gd^{3+}$ ion were the same regardless of the directions of $PbWO_4$ : Gd single crystal. The calculated energy differences for ${\mid{\pm}7/2}$ > ${\leftrightarrow}{\mid{\pm}5/2}$ >, ${\mid{\pm}5/2}$ > ${\leftrightarrow}{\mid{\pm}3/2}$ >, and ${\mid{\pm}3/2}$ > ${\leftrightarrow}{\mid{\pm}1/2}$ > transitions were 6.9574 GHz, 6.9219 GHz, and 15.8704 GHz, respectively when the applied magnetic field is zero. The calculated energy level diagrams were different for different directions of applied magnetic field. For B // a- and c-axis, the energy level diagrams are calculated and discussed.

Keywords

$PbWO_4$ single crystal;$Gd^{3+}$ ion;electron paramagnetic resonance;energy level

References

  1. M. Kobayashi, M. Ishii, Y. Usuki, and H. Yahagi, Nucl. Instr. and Meth. A 333, 429 (1993). https://doi.org/10.1016/0168-9002(93)91187-R
  2. P. Lecoq, I. Dafinei, E. Auffray, M. Schneegans, M. V. Korzhik, O. V. Missevitch, V. B. Pavlenko, A. A. Fedorov, A. N. Annenkov, V. L. Kostylev, and V. D. Ligun, Nucl. Instr. and Meth. A 365, 291 (1995). https://doi.org/10.1016/0168-9002(95)00589-7
  3. K. Nitsch, M. Nikl, S. Ganschow, P. Reiche, and R. Uecker, J. Crystal Growth 165, 163 (1996). https://doi.org/10.1016/0022-0248(96)00167-4
  4. R. Y. Zhu, D. A. Ma, H. B. Newman, C. L. Woody, J. A. Kirstead, S. P. Stoll, and P. W. Levy, Nucl. Instrum. Methods Phys. Res. A 376, 319 (1996). https://doi.org/10.1016/0168-9002(96)00286-0
  5. M. Nikl, P. Bohacek, E. Mihokova, N. Solovieva, M. Martini, A. Vedda, P. Fabeni, G. P. Pazzi, M. Kobayashi, M. Ishii, Y. Usuki, and D. Zimmerman, J. Crystal Growth 229, 312 (2001). https://doi.org/10.1016/S0022-0248(01)01170-8
  6. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Optics Communications 183, 277 (2000). https://doi.org/10.1016/S0030-4018(00)00842-7
  7. W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, Optics Commun. 194, 401 (2001). https://doi.org/10.1016/S0030-4018(01)01148-8
  8. E. Auffray, I. Dafinei, P. Lecoq, and M. Schneegans, Radiat. Eff. 135, 343 (1995). https://doi.org/10.1080/10420159508229864
  9. S. Baccaro, P. Bohacek, B. Borgia, A. Cecilia, I. Dafinei, M. Diemoz, M. Ishii, O. Jarolimek, M. Kobayashi, M. Martini, M. Montecchi, M. Nikl, K. Nitsch, Y. Usuki, and A. Vedda, Phys. Stat. Sol. (a) 160, R5 (1997). https://doi.org/10.1002/1521-396X(199704)160:2<R5::AID-PSSA99995>3.0.CO;2-L
  10. E. Auffray, P. Lecoq, M. Korzhik, A. Annenkov, O. Jarolimek, M. Nikl, S. Baccaro, A. Cecilia, M. Diemoz, and I. Dafinei, Nucl. Instr. and Meth. A 402, 75 (1998). https://doi.org/10.1016/S0168-9002(97)01088-7
  11. M. Nikl, P. Bohacek, E. Mihokova, M. Martini, F. Meinardi, A. Vedda, P. Fabeni, G. P. Pazzi, M. Kobayashi, M. Ishii, and Y. Usuki, J. Appl. Phys. 87, 4243 (2000). https://doi.org/10.1063/1.373060
  12. M. Nikl, P. Bohacek, E. Mihokova, S. Baccaro, A. Vedda, M. Diemoz, E. Longo, M. Kobayashi, E. Auffray, and P. Lecoq, Nucl. Phys. B (Proc. Suppl.) 78, 471 (1999). https://doi.org/10.1016/S0920-5632(99)00589-7
  13. C. Yang, Y. Guo, P. Shi, and G. Chen, J. Crystal Growth 226, 79 (2001). https://doi.org/10.1016/S0022-0248(01)01031-4
  14. S. Baccaro, P. Bohacek, B. Borgia, A. Cecilia, I. Dafinei, M. Diemoz, M. Ishii, O. Jarolimek, M. Kobayashi, M. Martini, M. Montecchi, M. Nikl, K. Nitsch, Y. Usuki, and A. Vedda, Phys. Stat. Sol. (a) 160, R5 (1997). https://doi.org/10.1002/1521-396X(199704)160:2<R5::AID-PSSA99995>3.0.CO;2-L
  15. M. Kobayashi, Y. Usuki, M. Ishii, T. Yazawa, K. Hara, M. Tanaka, M. Nikl, and K. Nitsch, Nucl. Instr. and Meth. A 399, 261 (1997). https://doi.org/10.1016/S0168-9002(97)00929-7
  16. M. Kobayashi, Y. Usuki, M. Ishii, T. Yazawa, K. Hara, M. Tanaka, M. Nikl, S. Baccaro, A. Cecilia, M. Diemoz, and I. Dafinei, Nucl. Instr. and Meth. A 404, 149 (1998). https://doi.org/10.1016/S0168-9002(97)01137-6
  17. M. Kobayashi, Y. Usuki, M. Ishii, N. Senguttuvan, K. Tanji, M. Chiba, K. Hara, H. Dakano, M. Nikl, P. Bohacek, S. Baccaro, A. Cecilia, and M. Diemoz, Nucl. Instr. and Meth. A 434, 412 (1999). https://doi.org/10.1016/S0168-9002(99)00550-1
  18. M. Nikl, P. Bohacek, K. Nitsch, E. Mihokova, M. Martini, A. Vedda, S. Crocci, G. Pazzi, P. Fabeni, S. Baccaro, B. Borgia, I. Dafinei, M. Diemoz, G. Organtini, E. Auffray, P. Lecoq, M. Kobayashi, M. Ishii, and Y. Usuki, Appl. Phys. Lett. 71, 3755 (1997). https://doi.org/10.1063/1.120409
  19. Z. Qi, C. Shi, D. Zhou, H. Tang, T. Liu, and T. Hu, Physica B: Condensed Matter 307, 45 (2001). https://doi.org/10.1016/S0921-4526(01)00973-5
  20. J. Rosa, H. R. Asatryan, and M. Nikl, Phys. Stat. Sol. (a) 158, 573 (1996). https://doi.org/10.1002/pssa.2211580226
  21. T. H. Yeom, S. H. Lee, I. G. Kim, S. H. Choh, T. H. Kim, and J. H. Ro, J. Appl. Phys. 87, 1424 (2001).
  22. T. H. Yeom, S. H. Lee, S. H. Choh, T. J. Han, T. H. Kim, and J. H. Ro, J. Appl. Phys. 94, 3796 (2003). https://doi.org/10.1063/1.1599048
  23. A. Hofstaetter, M. V. Korzhik, V. V. Laguta, B. K. Meyer, V. Nagirnyi, and R. Novotny, Radia. Meas. 33, 533 (2001). https://doi.org/10.1016/S1350-4487(01)00053-1
  24. P. W. Richter, G. J. Kruger, and C. W. F. T. Pistorios, Acta Crystallogr. B32, 928 (1976).
  25. T. Fujita, I. Kawada, and K. Kato, Acta Crystallogr. B33, 162 (1997).
  26. L. L. Y. Chang, J. Am Ceram. Soc. 54, 357 (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12316.x
  27. R. Shaw and G. F. Claringbull, Am. Mineral. 40, 933 (1955).
  28. L. Z. Leciejewitz, Z. Kristallogr. 121, 158 (1965). https://doi.org/10.1524/zkri.1965.121.2-4.158
  29. S. K. Misra and C. Rudowicz, Phys. Status Solidi B 147, 677 (1988). https://doi.org/10.1002/pssb.2221470226
  30. C. Rudowicz, Magn. Reson. Rev. 13, 1 (1987); 13, E355 (1988).
  31. D. G. McGavin, J. Mater. Res. 74, 19 (1987).
  32. S. Altschuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974), Chap. 3.

Acknowledgement

Supported by : 청주대학교 산업과학연구소