DOI QR코드

DOI QR Code

CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR

Arslan, Kadri;Kocayigit, Huseyin;Onder, Mehmet

  • 투고 : 2015.07.10
  • 발행 : 2016.04.30

초록

In this study, by using Laplace and normal Laplace operators, we give some characterizations for the Darboux instantaneous rotation vector field of the curves in the Euclidean 3-space $E^3$. Further, we give necessary and sufficient conditions for unit speed space curves to have 1-type Darboux vectors. Moreover, we obtain some characterizations of helices according to Darboux vector.

키워드

Darboux vector;Laplacian operator;helix

참고문헌

  1. B. Y. Chen and S. Ishikawa, Biharmonic surface in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), no. 2, 323-347.
  2. A. Ferrandez, P. Lucas, and M. A. Merono, Biharmonic Hopf cylinders, Rocky Monutain J. Math. 28 (1998), no. 3, 957-975. https://doi.org/10.1216/rmjm/1181071748
  3. H. H. Hacisalihoglu and R. Ozturk, On the characterization of inclined curves in $E^n$. I, Tensor, N. S. 64 (2003), 157-162.
  4. H. H. Hacisalihoglu and R. Ozturk, On the characterization of inclined curves in En. II, Tensor, N. S. 64 (2003), 163-169.
  5. K. Ilarslan, Some special curves on Non-Euclidean manifolds, Ph.D. Thesis, Ankara University, 2002.
  6. H. Kocayigit, Lorentz Manifoldlarinda Biharmonik Egriler ve Kontak Geometri, Ph.D. Thesis, Ankara University, 2004.
  7. H. Kocayigit and H. H. Hacisalihoglu, 1-type and biharmonic Frenet curves in Lorentzian 3-space, Iran. J. Sci. Technol. Trans. A Sci. 33 (2009), no. 2, 159-168.
  8. H. Kocayigit and H. H. Hacisalihoglu, 1-type and biharmonic curves in Euclidean 3-space, Int. Electron. J. Geom. 4 (2011), no. 1, 97-101.
  9. H. Kocayigit, G. Ozturk, B. Bayram Kilic, B. Bulca, and K. Arslan, Characterizations of Curves in $E^{2n+1}$ with 1-type Darboux Vector, Math. Morav. 17 (2013), no. 2, 29-37. https://doi.org/10.5937/MatMor1302029K
  10. M. Petrovic-Torgasev and E. Sucurovic, W-curves in Minkowski space-time, Novi Sad J. Math. 32 (2002), no. 2, 55-65.
  11. D. J. Struik, Lectures on Classical Differential Geometry, 2nd ed. Addison Wesley, Dover, 1988.