고분자 첨가에 의한 콜타르 핏치의 결정성 및 탄소섬유 물성 변화

Kim, Jung-Dam;Yun, Jae-Min;Lim, Yun-Soo;Kim, Myung-Soo

  • 투고 : 2016.01.07
  • 심사 : 2016.02.14
  • 발행 : 2016.04.27


In order to use coal tar pitch (CTP) as a raw material for carbon fibers, it should have suitable properties such as a narrow range of softening point, suitable viscosity and uniform optical properties. In this study, raw CTP was modified by heat treatment with three types of polymer additives (PS, PET, and PVC) to make a spinnable pitch for carbon fibers. The yield, softening point, C/H ratio, insoluble yield, and meso-phase content of various modified CTPs with polymer additives were analyzed by changing the type of polymer additive and the heat treatment temperature. The purpose of this study was to compare the properties of CTPs modified by polymer addition with those of a commercial CTP. After the pitch spinning, the obtained green fibers were stabilized and carbonized. The properties of the respective fibers were analyzed to compare their uniformity, diameter change, and mechanical properties. Among three polymer additives, PS220 and PET261 pitches were found to be spinnable, but the carbon fibers from PET261 showed mechanical properties comparable with those of a commercial CTP produced by an air-blowing method (OCI284). The CTPs modified with polymer additive had higher ${\beta}$-resin fractions than the CTP with only thermal treatment indicating a beneficial effect of carbon fiber application.


coal-tar-pitch;carbon fiber;polystyrene;poly ethylene terephthalate;poly vinyl chloride


  1. M. C. Kim, S. Y. Eom, S. K. Ryu and D. D. Edie, Korean J. Chem. Eng., 43, 745 (2005).
  2. S. M. Oh and Y. D. Park, Fuel, 78, 1859 (1999).
  3. W. Ciesinska, J. Zielinski and T. Bzozowska, J. Therm. Anal. Calorim., 95, 193 (2009).
  4. C. Blanco, R. Santamaria, J. Bermejo and R. Menendez, Carbon, 38, 517 (2000).
  5. B. Yu, C. Wang, M. Chen, J. Zheng and J. QI, Fuel Process. Technol., 104, 155 (2012).
  6. J. J. Fernandez, A. Figueiras, M. Granda, J. Bermejo and R. Menendez, Carbon, 33, 295 (1995).
  7. H. J. Ko, C. U. Park, H. H. Cho, M. J. Yoo, M. S. Kim and Y. S. Lim, Korean J. Mater. Res., 23, 276 (2013).
  8. J. Machnikowski, H. Machnikoska, T. Brzozowska and J. Zielinski, J. Anal. Appl. Pyrol, 65, 147 (2002).
  9. J. Zielinski, B. Pacewska, T. Bzozowska and J. Machnikowski, J. Therm. Anal. Calorim., 60, 296 (2000).
  10. T. Brzozowska, J. Zielinski and J. Machnikowski, J. Anal. Appl. Pyrol, 48, 45 (1998).
  11. J. S. Hwang, C. H. Lee, K. H. Cho, M. S. Kim, C. J. Kim, S. K. Ryu and B. S. Rhee, Korean J. Chem. Eng. Res., 33, 551 (1995).
  12. M. S. Kim, S. Y. Kim and J. C. Hwang, J. Korean Oil Chemist’s Soc., 14, 77 (1997).
  13. M. J. Yoo, H. J. Ko, Y, S, Lim and M, S, Kim, Carbon Lett., 15, 247 (2014).
  14. C. Panaitescu and G. Predeanu, Int. J. Coal Geol., 71, 448 (2007).
  15. J. A. Monge, D. C. Amoros and A. L. Solano, Fuel, 80, 41 (2001).
  16. M. Cranda, E. Casal, J. Bermejo and R. Menendez, Carbon, 39, 483 (2001).
  17. M. D. Guillen, M. J. Iglesias, A. Dominguez and C. G. Blanco, Energ. Fuel., 6, 518 (1992).
  18. M. D. Guillen, M. J. Iglesias, A. Dominguez and C. G. Blanco, Fuel, 74, 1595 (1995).
  19. B. Manoj and A. G. Kunjumana, Int. J. Electrochem. Sci., 7, 3127 (2012).
  20. C. Lu, S. Xu, Y. Gan, S. Liu and C. Liu, Carbon, 43, 2295 (2005).
  21. P. R. Choi, E. Lee, S. H. Kwon, J. C. Jung and M. S. Kim, J. Phys. Chem. Sol., 87, 72 (2015).