DOI QR코드

DOI QR Code

Iron Oxide-Carbon Nanotube Composite for NH3 Detection

산화철-탄소나노튜브 나노복합체의 암모니아 가스센서 응용

Lee, Hyundong;Kim, Dahye;Ko, DaAe;Kim, Dojin;Kim, Hyojin
이현동;김다혜;고다애;김도진;김효진

  • Received : 2016.01.20
  • Accepted : 2016.02.29
  • Published : 2016.04.27

Abstract

Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with $500^{\circ}C/2h$ oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.

Keywords

gas sensor;iron oxide-carbon nanotube composite;$NH_3$;room temperature

References

  1. N. K. Pawar, D. D. Kajale, G. E. Patil, V. G. Wagh, V. B. Gaikwad , M. K. Deore and G. H. Jain, Int. J. Smart Sens. Intelligent Syst., 5, 441 (2012). https://doi.org/10.21307/ijssis-2017-489
  2. A. Mandelis, C. Christofides, Physics, Chemistry and Technology of Solid State Gas Sensor Devices, Wiley-Interscience, New York (1993).
  3. N. H. Kim and G. J. Kim, J. Nanosci. Nanotechnol., 11, 3914 (2007).
  4. N. D. Hoa, N. V. Quy, Y. Cho and D. Kim, Sens. Actuators B, 135, 656 (2009). https://doi.org/10.1016/j.snb.2008.10.041
  5. N. D. Hoa, N. V. Quy, Y. Cho and D. Kim, J. Cryst. Growth., 311, 657 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.076
  6. D. H. Oh, N. D. Hoa and D. Kim, J. Nanosci. Nanotechnol., 11, 1601 (2011). https://doi.org/10.1166/jnn.2011.3318
  7. N. M. Vuong, D. Kim, H. Jung, H. Kim and S. K. Hong, J. Mater. Chem., 22, 6716 (2012). https://doi.org/10.1039/c2jm15971f
  8. N. M. Vuong, D. Kim and H. Kim, Sens. Actuators B, 220, 932 (2015). https://doi.org/10.1016/j.snb.2015.06.031
  9. N. Donato, M. Latino, G. Neri, Carbon nanotubes-From research to applications, p. 299 Ed. Bianco, In Tech Pub. Astralia, (2011).
  10. S. Moon, N. M. Vuong, D. Lee, D. Kim, H. Lee, D. Kim, S. K. Hong and S. G. Yoon, Sens. Actuators B, 222, 166 (2016). https://doi.org/10.1016/j.snb.2015.08.072
  11. N. M. Vuong, D. Kim and H. Kim, Sci. Rep., 5, 11040 (2015). https://doi.org/10.1038/srep11040
  12. S. H. Jung, E. Oh, K. H. Lee, W. Park and S. H. Jeong, Adv. Mater., 19, 749 (2007). https://doi.org/10.1002/adma.200601859
  13. H. Jung, Y. S. Cho, Y. J. Kang and D. J. Kim, Korean J. Mater. Res., 18, 5 (2008). https://doi.org/10.3740/MRSK.2008.18.1.005
  14. Y. Miyata, K. Mizuno and H. Kataura, J. Nanomater., 2011, 1 (2011).
  15. G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son and D. J. Kim, J. Appl. Phys., 91, 3847 (2002). https://doi.org/10.1063/1.1448877
  16. D. Oh, Y. Kang, H. Jung, H. Song, Y. Cho and D. Kim, Korean J. Mater. Res., 19, 488 (2009). https://doi.org/10.3740/MRSK.2009.19.9.488
  17. X. Zhang, H. Li, S. Wang, F. F. Fan and A. J. Bard, J. Phys. Chem. C, 118, 16842 (2014). https://doi.org/10.1021/jp500395a

Acknowledgement

Grant : BK21플러스

Supported by : 충남대학교