발산 순압 로스비-하우어비츠 파동의 안정성

DOI QR코드

DOI QR Code

정한별;정형빈
Jeong, Han-Byeol;Cheong, Hyeong-Bin

  • 투고 : 2016.03.21
  • 심사 : 2016.04.15
  • 발행 : 2016.04.30

초록

전구영역 수치모델을 이용하여 순압 로스비-하우어비츠 파동의 안정성을 조사하였다. 본 연구에서 조사한 로스비-하우어비츠 파동은 강체 회전하는 동서 기본류와 유한한 진폭을 가지는 구면조화 파동으로 구성된다. 로스비-하우어비츠 파동은 강체 회전하는 동서 평균류의 강도에 따라 정상 또는 비정상의 구조로 나타난다. 수치 실험을 통해 임의의 다른 두 시간에서 섭동장의 진폭을 비교하여 파동의 안정성뿐만 아니라 성장률을 결정하였다. 로스비-하우어비츠 파동의 불안정 모드는 다양한 동서 파수 성분이 결합된 형태로 나타났다. 파동의 속도가 느린 지역에서 와도 섭동장은 불연속적인 형태를 보이는데, 이는 모델의 수평 해상도와 관계가 없는 것으로 밝혀졌다. 푸리에-유한 요소 모델에서 더 이른 적분 시간에 불안정 모드가 나타났는데, 이는 구면조화 스펙트럴 모델 대비 더 낮은 수치 정확도를 가지기 때문인 것으로 보인다. 모델의 전체적인 정확도를 고려하여, 불안정 모드가 구면 조화 파동을 전체적으로 지배하기 시작하는 시간을 추정하였다.

키워드

정상 로스비-하우어비츠 파동;천해파 모델;푸리에-유한요소법;구면 조화 함수

참고문헌

  1. Baines, P.G., 1976, The stability of planetary waves on a sphere. Journal of Fluid Mechanics, 73, 193-213. https://doi.org/10.1017/S0022112076001341
  2. Browning, G.L., Hack, J.J., and Swarztrauber, P.N., 1989, A comparison of three numerical methods for solving differential equations on the sphere. Monthly Weather Review, 117, 1058-1075. https://doi.org/10.1175/1520-0493(1989)117<1058:ACOTNM>2.0.CO;2
  3. Cheong, H.B., 2000, Application of double Fourier series to the Shallow-Water Equations on a Sphere. Journal of Computational Physics, 165, 261-287. https://doi.org/10.1006/jcph.2000.6615
  4. Cheong, H.B., 2006, A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Monthly Weather Review, 134, 1299-1315. https://doi.org/10.1175/MWR3121.1
  5. Cheong, H.B. and Park, J.R., 2007, Geopotential field in nonlinear balance. Journal of Korean Earth Science Society, 28, 936-946. https://doi.org/10.5467/JKESS.2007.28.7.936
  6. Cheong, H.B. and Jeong, H.B., 2015, Construction of the spherical high-order filter for applications to global meteorological data. Journal of Korean Earth Science Society, 36, 476-483. https://doi.org/10.5467/JKESS.2015.36.5.476
  7. Cheong, H.B. and Kang, H.G., 2015, Eigensolutions of the spherical Laplacian for the cubed-sphere and icosahedral-hexagonal grids. Quarterly Journal of the Royal Meteorological Society, 141, 3383-3398. https://doi.org/10.1002/qj.2620
  8. Cheong, H.B., Kong, H.J., Kang, H.G., and Lee, J.D., 2015, Fourier Finite-Element Method with Linear Basis Functions on a Sphere: Application to Elliptic and Transport Equations. Monthly Weather Review, 143, 1275-1294. https://doi.org/10.1175/MWR-D-14-00093.1
  9. Craig, R.A., 1945, A solution of the nonlinear vorticity equation for atmospheric motion. Journal of the Atmospheric Sciences, 2, 175?178.
  10. Daley, R., 1983, Linear non-divergent mass-wind laws on the sphere. Tellus, 35A, 17-27. https://doi.org/10.1111/j.1600-0870.1983.tb00181.x
  11. Haurwitz, B., 1940, The motion of atmospheric disturbances on a spherical earth. Journal of Marine Research, 3, 254-267.
  12. Hoskins, B.J., 1973, Stability of the Rossby-Haurwitz wave. Quarterly Journal of the Royal Meteorological Society, 99, 723-745. https://doi.org/10.1002/qj.49709942213
  13. Krishnamurti, T.N., Bedi, H.S., Hardiker, V.M., and Ramaswamy, L., 2006, An Introduction to Global Spectral Modeling. 2nd revised and enlarged ed. Springer, 317 pp
  14. Longuet-Higgins, M.S., 1968, The Eigenfunctions of Laplace's tidal equations over a sphere. Philosophical Transactions of the Royal Society of London, Series A, 262, 511?607.
  15. Lorenz, E.N., 1972, Barotropic instability of Rossby wave motion. Journal of Atmospheric Sciences, 29, 258-264
  16. Neamtan, S.M., 1946, The motion of harmonic waves in the atmosphere. Journal of Meteorology, 3, 53?56. https://doi.org/10.1175/1520-0469(1946)003<0053:TMOHWI>2.0.CO;2
  17. Orszag, S.A., 1970, Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation. Journal of Atmospheric Sciences, 27, 890-895. https://doi.org/10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2
  18. Ortland, D.A., 2005, Generalized Hough modes: The structure of damped global-scale waves propagating on a mean flow with horizontal and vertical shear. Journal of Atmospheric Sciences, 62, 2674-2683. https://doi.org/10.1175/JAS3500.1
  19. Phillips, N.A., 1959, Numerical integration of the primitive equations on the hemisphere. Monthly Weather Review, 87, 333-345. https://doi.org/10.1175/1520-0493(1959)087<0333:NIOTPE>2.0.CO;2
  20. Skiba, Y.N., 2008, Nonlinear and linear instability of the Rossby-Haurwitz wave. Journal of Mathematical Sciences, 149, 1708-1725. https://doi.org/10.1007/s10958-008-0091-3
  21. Swarztrauber, P.N., 1996, Spectral transform methods for solving the shallow-water equations on the sphere. Monthly Weather Review, 124, 730-744. https://doi.org/10.1175/1520-0493(1996)124<0730:STMFST>2.0.CO;2
  22. Thuburn, J. and Li, Y., 2000, Numerical Simulations of Rossby-Haurwitz waves. Tellus, 52, 180-189.
  23. Williamson, D.L. and Browning, G.L., 1973, Comparison of grids and difference approximations for numerical weather prediction over a sphere. Journal of Applied Meteorology, 12, 264-274. https://doi.org/10.1175/1520-0450(1973)012<0264:COGADA>2.0.CO;2
  24. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., and Swarztrauber, P.N., 1992, A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics, 102, 211-224. https://doi.org/10.1016/S0021-9991(05)80016-6
  25. Lynch, P., 2009, On resonant Rossby-Haurwitz triads. Tellus, 61, 438-445. https://doi.org/10.1111/j.1600-0870.2009.00395.x

과제정보

연구 과제 주관 기관 : 부경대학교