Study on the Electrolyte Added Chlorosulfuric Acid for All-vanadium Redox Flow Battery

바나듐 레독스 흐름 전지용 전해액으로 클로로황산 첨가에 관한 연구


  • Received : 2016.03.25
  • Accepted : 2016.04.30
  • Published : 2016.04.30


The electrolyte added the chlorosulfuric acid ($HSO_3Cl$) as an additive was tested for the electrolyte in all-vanadium redox flow battery (VRFB) to increase the thermal stability of electrolyte. The electrolyte property was measured by the CV (cyclic voltammetry) method. The maximum value of a voltage and current density in the electrolyte added $HSO_3Cl$ was higher than that in the electrolyte non-added $HSO_3Cl$. The thermal stability of the pentavalent vanadium ion solution, which was tested at $40^{\circ}C$, increased by adding $HSO_3Cl$. The performances of VRFB using the electrolyte added and non-added $HSO_3Cl$ were measured during 30 cycles of charge-discharge at the current density of $60mA/cm^2$. An average energy efficiency of the VRFB was 72.5%, 82.4%, and 81.6% for the electrolyte non-added $HSO_3Cl$, added 0.5 mol of $HSO_3Cl$, and added 1.0 mol of $HSO_3Cl$, respectively. VRFB using the electrolyte added $HSO_3Cl$ was showed the higher performance than that using the electrolyte non-added $HSO_3Cl$.


Secondary battery;Redox flow battery;Vanadium;Electrolyte;Energy storage


  1. G-J. Hwang, A-S. Kang, H. Ohya, "Review of the redox-flow secondary battery", Chemical Industry and Technology, Vol. 16, No. 5, 1998, p. 455.
  2. H-S. Choi, J-C. Kim, C-H. Ryu, G-J. Hwang, "Research review of the all vanadium redox-flow battery for large scale power storage", Membrane Journal, Vol. 21, No. 2, 2011, p. 107.
  3. M. Skyllas-kazacos, F. Grossmith, "Efficient vanadium redox flow battery", J. Electrochem. Soc., Vol. 134, No. 12, 1987, p. 2950.
  4. M. Skyllas-Kazacos, D. Kasherman, D.R. Hong, M. Kazacos, "Characteristics and performance of 1kW UNSW vanadium redox battery", J. Power Sources, Vol. 35, 1991, p. 399.
  5. H-S. Choi, Y-H. Oh, C-H. Ryu, G-J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Ins. Chem. Eng., Vol. 45, No. 6, 2014, p. 2920.
  6. G-J. Hwang, Y-H. Oh, C-H. Ryu, H-S. Choi, "Electrochemical properties of current collector in the all-vanadium redox flow battery", Korean Chem. Eng. Res., Vol. 52, No. 2, 2014, p. 182.
  7. P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You, B. Yi, "A novel electrode-bipolar plate assembly for the vanadium redox flow battery applications", J. Power Sources, Vol. 175, 2008, p. 613.
  8. N. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, M. Kamimoto, "Vanadium redox reactions and carbon electrodes for vanadium redox flow battery", Electrochim. Acta, Vol. 36, 1991, p. 1191.
  9. X. Li, K. Huang, S. Liu, N. Tan, L. Chen, "Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application", Tran. Nonferrous Metals Society China, Vol. 17, 2007, p. 195.
  10. L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, "Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery", Carbon, Vol. 48, 2010, p. 3079.
  11. T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, A. Su, "Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery", J. Solid State Electrochem., Vol. 16, 2012, p. 579.
  12. X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, "$PbO_2$-modified graphite felt as the positive electrode for an all-vanadium redox flow battery", J. Power Sources, Vol. 250, 2014, p. 274.
  13. D. Yang, G. Guo, J. Hu, C. Wang, D. Jiang, "Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes", J. Materials Chem., Vol. 18, 2008, p. 350.
  14. X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, "Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery", Electrochim. Acta, Vol. 138, 2014, p. 264.
  15. F. Rahman, M. Skyllas-Kazacos, "Solubility of vanadyl sulfate in concentrated sulfuric acid solutions", J. Power Sources, Vol. 72, 1998, p.105.
  16. M. Skyllas-Kazacos, C. Menictas, M. Kazacos, "Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell", J. Eelctrochem. Soc., Vol. 143, 1996, L86.
  17. M. Kazacos, M. Cheng, M. Skyllas-Kazacos, "Vanadium redox cell electrolyte optimization studies", J. Appl. Electrochem., Vol. 20, 1990, p.463.
  18. S. Li, K. Huang, S. Liu, D. Fang, X. Wu, D. Lu, T. Wu, "Effect of organic additives on positive electrolyte for vanadium redox battery", Electrochim. Acta, Vol. 56, 2011, p. 5483.
  19. F. Chang, C. Hu, X. Liu, L. Liu, J. Zhang, "Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery", Electrochim. Acta, Vol. 60, 2012, p. 334.
  20. S. Peng, N. Wang, C. Gao, Y. Lei, X. Liang, S. Liu, Y. Liu, "Stability of positive electrolyte containing trishydroxymethyl amiomethane additive for vanadium redox flow battery", Int. J. Electrochem. Sci., Vol. 7, 2012, p. 4388.
  21. X. Liang, S. Peng, Y. Lei, C. Gao, N. Wang, S. Liu, D. Fang, "Effect of L-glutamic acid on the positive electrolyte for all- vanadium redox flow battery", Electrochim. Acta, Vol. 95, 2013, p. 80.
  22. G. Wang, J. Chen, X. Wang, J. Tian, H. Kang, X. Zhu, Y. Zhang, X. Liu, R. Wang, "Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery", J. Energy Chem., Vol. 23, 2014, p. 73.


Supported by : 한국산업기술진흥원