DOI QR코드

DOI QR Code

Seasonal Variation of the Concentrations of Pinic Acid and cis-Pinonic Acid in the Atmosphere over Seoul

서울시 대기 중 Pinic Acid와 cis-Pinonic Acid의 계절별 농도 변화

  • Received : 2016.02.17
  • Accepted : 2016.04.07
  • Published : 2016.04.30

Abstract

Pinic acid (PA) and cis-pinonic acid (CPA) in the atmospheric particulate matter with an aerodynamic diameter of less than or equal to a nominal $10{\mu}m$ ($PM_{10}$) were analyzed for the samples collected during the period of April 2010 to April 2011 at Jongro in Seoul. Both pinic acid and cis-pinonic acid showed higher seasonal average concentrations in summer (PA; $18.9ng/m^3$, CPA; $16.0ng/m^3$) than winter (PA; $5.3ng/m^3$, CPA; $5.9ng/m^3$). They displayed a seasonal pattern associated with temperature reflecting the influence on emissions of ${\alpha}-pinene$ and ${\beta}-pinene$ from conifers and their photochemical reaction. These results were confirmed through Pearson correlation coefficient between CPA, PA and $O_3+NO_2$, temperature. CPA was only correlated with n-alkanes ($C_{29}$, $C_{31}$, $C_{33}$) from biogenic source. PA was correlated with n-alkanes ($C_{29}$, $C_{31}$, $C_{33}$), n-alkanoic acid ($C_{20}$, $C_{22}$, $C_{24}$) from biogenic source and n-alkanes ($C_{28}$, $C_{30}$, $C_{32}$), and n-alkanoic acid ($C_{16}$, $C_{18}$) from anthropogenic source. These results showed that the formation of PA and CPA from ${\alpha}-pinene$ and ${\beta}-pinene$ is related to organic compounds from biogenic source. And it is possible for PA to be effected by organic compounds from anthropogenic source.

Keywords

Pinic acid;cis-Pinonic acid;Seasonal variation;Biogenic source;Seoul

References

  1. Ackerman, A.S., M.P. Kirkpatrick, D.E. Stevens, and O.B. Toon (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014-1017. https://doi.org/10.1038/nature03174
  2. Anttila, P., T. Rissanen, M. Shimmo, M. Kallio, T. Hyotylainen, M. Kulmala, and M.-L. Riekkola (2005) Organic compounds in atmospheric aerosols from a finnish coniferous forest, Boreal Environ. Res., 10, 371-384.
  3. Cheng, Y., J.R. Brook, S.-M. Li, and A. Leithead (2011) Seasonal variation in the biogenic secondary organic aerosol tracer cis-pinonic acid: Enhancement due to emissions from regional and local biomass burning, Atmos. Environ., 45, 7105-7112. https://doi.org/10.1016/j.atmosenv.2011.09.036
  4. Cheng, Y., S.-M. Li, A. Leithead, P.C. Brickell, and W.R. Leaitch (2004) Characterizations of cis-pinonic acid and n-fatty acids on fine aerosols in the Lower Fraser Valley during Pacific 2001 Air Quality Study, Atmos. Environ., 38, 5789-5800. https://doi.org/10.1016/j.atmosenv.2004.01.051
  5. Choi, N.R., S.P. Lee, J.Y. Lee, C.H. Jung, and Y.P. Kim (2016) Speciation and source identification of organic compounds in PM 10 over Seoul, South Korea, Chemosphere, 144, 1589-1596. https://doi.org/10.1016/j.chemosphere.2015.10.041
  6. Christoffersen, T., J. Hjorth, O. Horie, N. Jensen, D. Kotzias, L. Molander, P. Neeb, L. Ruppert, R. Winterhalter, and A. Virkkula (1998) cis-Pinic acid, a possible precursor for organic aerosol formation from ozonolysis of ${\alpha}$-pinene, Atmos. Environ., 32, 1657-1661. https://doi.org/10.1016/S1352-2310(97)00448-2
  7. Ding, X., X.-M. Wang, and M. Zheng (2011) The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: Observations at a rural site in the central Pearl River Delta region, South China, Atmos. Environ., 45, 1303-1311. https://doi.org/10.1016/j.atmosenv.2010.11.057
  8. Fu, P., K. Kawamura, Y. Kanaya, and Z. Wang (2010) Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt. Tai, Central East China, Atmos. Environ., 44, 4817-4826. https://doi.org/10.1016/j.atmosenv.2010.08.040
  9. Hakola, H., J. Arey, S.M. Aschmann, and R. Atkinson (1994) Product formation from the gas-phase reactions of OH radicals and $O_3$ with a series of monoterpenes, J. Atmos. Chem., 18, 75-102. https://doi.org/10.1007/BF00694375
  10. Haque, M.M., K. Kawamura, and Y. Kim (2016) Seasonal variations of biogenic secondary organic aerosol tracers in ambient aerosols from Alaska, Atmos. Environ., 130, 95-104. https://doi.org/10.1016/j.atmosenv.2015.09.075
  11. Hyder, M., J. Genberg, M. Sandahl, E. Swietlicki, and J.a. Jonsson (2012) Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution, Atmos. Environ., 57, 197-204. https://doi.org/10.1016/j.atmosenv.2012.04.027
  12. Kavouras, I.G., N. Mihalopoulos, and E.G. Stephanou (1999) Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests, Geophys. Res. Lett., 26, 55-58. https://doi.org/10.1029/1998GL900251
  13. Kley, D., H. Geiss, and V.A. Mohnen (1994) Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe, Atmos. Environ., 28, 149-158. https://doi.org/10.1016/1352-2310(94)90030-2
  14. Kroll, J.H. and J.H. Seinfeld (2008) Chemistry of secondary organic aerosol: Formation and evolution of lowvolatility organics in the atmosphere, Atmos. Environ., 42, 3593-3624. https://doi.org/10.1016/j.atmosenv.2008.01.003
  15. Lamb, B., A. Guenther, D. Gay, and H. Westberg (1987) A national inventory of biogenic hydrocarbon emissions, Atmos. Environ., 21, 1695-1705. https://doi.org/10.1016/0004-6981(87)90108-9
  16. Loreto, F., P. Ciccioli, A. Cecinato, E. Brancaleoni, M. Frattoni, and D. Tricoli (1996) Influence of environmental factors and air composition on the emission of [alpha]-pinene from quercus ilex leaves, Plant Physiol., 110, 267-275. https://doi.org/10.1104/pp.110.1.267
  17. Medeiros, P.M., M.H. Conte, J.C. Weber, and B.R.T. Simoneit (2006) Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine, Atmos. Environ., 40, 1694-1705. https://doi.org/10.1016/j.atmosenv.2005.11.001
  18. O'Dowd, C.D., P. Aalto, K. Hmeri, M. Kulmala, and T. Hoffmann (2002) Aerosol formation: Atmospheric particles from organic vapours, Nature, 416, 497-498. https://doi.org/10.1038/416497a
  19. Oliveira, C., C. Pio, C. Alves, M. Evtyugina, P. Santos, V. Goncalves, T. Nunes, A.J.D. Silvestre, F. Palmgren, P. Wahlin, and S. Harrad (2007) Seasonal distribution of polar organic compounds in the urban atmosphere of two large cities from the North and South of Europe, Atmos. Environ., 41, 5555-5570. https://doi.org/10.1016/j.atmosenv.2007.03.001
  20. Pankow, J.F. (1994) An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol, Atmos. Environ., 28, 189-193. https://doi.org/10.1016/1352-2310(94)90094-9
  21. Rogge, W.F., M.A. Mazurek, L.M. Hildemann, G.R. Cass, and B.R. Simoneit (1993) Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation, Atmos. Environ. Part A, 27, 1309-1330. https://doi.org/10.1016/0960-1686(93)90257-Y
  22. Simoneit, B.R., J. Cardoso, and N. Robinson (1990) An assessment of the origin and composition of higher molecular weight organic matter in aerosols over Amazonia, Chemosphere, 21, 1285-1301. https://doi.org/10.1016/0045-6535(90)90145-J
  23. Yu, J., D.R. Cocker III, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld (1999) Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products, J. Atmos. Chem., 34, 207-258. https://doi.org/10.1023/A:1006254930583

Acknowledgement

Supported by : 한국연구재단, 기상청