DOI QR코드

DOI QR Code

Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy

판재의 이방성을 고려한 연성파단모델 개발

Park, N.;Huh, H.
박남수;허훈

  • Received : 2015.12.09
  • Accepted : 2016.01.19
  • Published : 2016.04.01

Abstract

This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.

Keywords

Anisotropy;Fracture Envelope;Fracture Locus;Fracture Strain

References

  1. S. P. Keeler, W. A. Backofen, 1963, Plastic Instability and Fracture in Sheets Stretched over Rigid Punches, ASM Trans. Q., Vol. 56, No. 1, pp.25~48.
  2. Y. Li, M. Luo, J. Gerlach, T. Wierzbicki, 2010, Prediction of Shear-induced Fracture in Sheet Metal Forming, J. Mater. Process. Technol., Vol. 210, No. 14, pp. 1858~1869. https://doi.org/10.1016/j.jmatprotec.2010.06.021
  3. T. Børvik, O. S. Hopperstad, K. O. Pedersen, 2010, Quasi-brittle Fracture during Structural Impact of AA7075-T651 Aluminium Plates, Int. J. Impact Eng., Vol. 37, No. 5, 537~551. https://doi.org/10.1016/j.ijimpeng.2009.11.001
  4. A. S. Khan, H. Liu, 2012, A New Approach for Ductile Fracture Prediction on Al2024-T351 Alloy, Int. J. Plast., Vol. 35, pp. 1~12. https://doi.org/10.1016/j.ijplas.2012.01.003
  5. A. S. Khan, H. Liu, 2012, Strain Rate and Temperature Dependent Fracture Criteria for Isotropic and Anisotropic Metals, Int. J. Plast., Vol. 37, pp. 1~15. https://doi.org/10.1016/j.ijplas.2012.01.012
  6. M. G. Cockcroft, D. J. Latham, 1963, Ductility and the Workability of Metals, J. Inst. Met., Vol. 96, pp. 33~39.
  7. Y. Bai, T. Wierzbicki, 2010, Application of Extended Mohr–Coulomb Criterion to Ductile Fracture, Int. J. Fract., Vol. 161, No. 1, pp. 1~20. https://doi.org/10.1007/s10704-009-9422-8
  8. Y. Lou, H. Huh, S. Lim, K. Pack, 2012, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., Vol. 49, No. 25, pp. 3605~3615. https://doi.org/10.1016/j.ijsolstr.2012.02.016
  9. Y. Lou, J. H. Yoon, H. Huh, 2014, Modeling of Shear Ductile Fracture Considering a Changeable Cut-off Value for Stress Triaxiality, Int. J. Plast., Vol. 54, pp. 56~80. https://doi.org/10.1016/j.ijplas.2013.08.006
  10. N. Park, H. Huh, J. B. Nam, C. G. Jung, 2015, Anisotropy Effect on the Fracture Model of DP980 Sheets Considering the Loading Path, Int. J. Automot. Technol., Vol. 16, No. 1, pp. 73~81. https://doi.org/10.1007/s12239-015-0008-3
  11. Y. Lou, S. J. Lim, H. Huh, 2013, Prediction of Fracture Forming Limit for DP780 Steel Sheet, Met. Mater. Int., Vol. 19, No. 4, pp. 697~705. https://doi.org/10.1007/s12540-013-4009-3