DOI QR코드

DOI QR Code

INTERVAL VALUED (α, β)-INTUITIONISTIC FUZZY BI-IDEALS OF SEMIGROUPS

ABDULLAH, SALEEM;ASLAM, MUHAMMAD;HUSSAIN, SHAH

  • 투고 : 2015.02.12
  • 심사 : 2015.05.26
  • 발행 : 2016.01.30

초록

The concept of quasi-coincidence of interval valued intuitionistic fuzzy point with an interval valued intuitionistic fuzzy set is considered. By using this idea, the notion of interval valued (α, β)-intuitionistic fuzzy bi-ideals, (1,2)ideals in a semigroup introduced and consequently, a generalization of interval valued intuitionistic fuzzy bi-ideals and intuitionistic fuzzy bi-ideals is defined. In this paper, we study the related properties of the interval valued (α, β)-intuitionistic fuzzy bi-ideals, (1,2) ideals and in particular, an interval valued (Є, Є ∨q)-fuzzy bi-ideals and (1,2) ideals in semigroups will be investigated.

키워드

Semigroup;Interval valued (α, β)-intuitionistic fuzzy bi-ideal;Interval valued (Є, Є ∨q)-intuitionistic fuzzy bi-ideal;Interval valued (Є, Є ∨q)-intuitionistic fuzzy (1, 2) ideal

참고문헌

  1. L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  2. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517. https://doi.org/10.1016/0022-247X(71)90199-5
  3. N. Kuroki, On fuzzy semigroups, Inform. Sci. 53 (1991) 203-236. https://doi.org/10.1016/0020-0255(91)90037-U
  4. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems, 5 (1981), 203-215. https://doi.org/10.1016/0165-0114(81)90018-X
  5. N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems, 8 (1982), 71-79. https://doi.org/10.1016/0165-0114(82)90031-8
  6. N. Kuroki, On fuzzy semigroups, Inform. Sci. 53 (1991), 203-236. https://doi.org/10.1016/0020-0255(91)90037-U
  7. N. Kuroki, Fuzzy generalized bi-ideals in semigroups, Inform. Sci. 66 (1992), 235-243. https://doi.org/10.1016/0020-0255(92)90095-P
  8. N. Kuroki, On fuzzy semiprime quasi-ideals in semigroups, Inform. Sci. 75 (1993), 201-211. https://doi.org/10.1016/0020-0255(93)90054-P
  9. N. Kuroki, Fuzzy bi-ideals in Semigroups, Commentarii Mathematici Universitatis Sancti Pauli, 28 (1979), 17-21.
  10. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems, 5 (1981), 203-215. https://doi.org/10.1016/0165-0114(81)90018-X
  11. J.N. Mordeson, D.S. Malik and N. Kuroki, Fuzzy semigroups, Studies in Fuzziness and Soft Computing, Springer-Verlag Berlin, 131 (2003).
  12. J.N. Mordeson and D.S. Malik, FUZZY AUTOMATA AND LANGUAGES, THEORY AND APPLICATIONS, Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton, (2002).
  13. Y.B. Jun and M.S. Kang, Fuzzification of generalized tersaki filters in tersaki algebras, Comp. Math. App., 61 (2011), 1-7. https://doi.org/10.1016/j.camwa.2010.10.024
  14. R. Ameri and T. Nozeri, Fuzzy hyperalgebras, Comp. Math. App., 61 (2011), 149-154. https://doi.org/10.1016/j.camwa.2010.08.059
  15. B. Davvaz, J. Jhan and Y. Yin, Fuzzy Hv-ideals in Γ-Hv-rings, Comp. Math. App., 61 (2011), 690-698. https://doi.org/10.1016/j.camwa.2010.12.016
  16. B. Davvaz, J. Zhan and K.H. Kim, Fuzzy Γ-hypernear-rings, Comp. Math. App., 59 (2010), 2846-2853. https://doi.org/10.1016/j.camwa.2010.02.003
  17. B. Davvaz, Fuzzy krasner (m, n)-hyperrings, Comp. Math. App., 59 (2010), 3879-3891. https://doi.org/10.1016/j.camwa.2010.04.025
  18. K. Sun, X. Yuan and H. Li, Fuzzy hypergraphs on fuzzy relations, Comp. Math. App., 60 (2010), 610-622. https://doi.org/10.1016/j.camwa.2010.05.007
  19. P.M. Pu and M. liu, Fuzzy topology I: nieghbourhood structure of a fuzzy point and moore- smith convergence, J. Math. Anl. Appl. 76 (1980), 571-599. https://doi.org/10.1016/0022-247X(80)90048-7
  20. V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci. 158 (2004), 277-288. https://doi.org/10.1016/j.ins.2003.07.008
  21. M. Shabir, Y.B. Jun and Y. Nawaz, Characterizations of regular semigroups by (α, β)-fuzzy ideals, Comp. Math. App., 59 (2010), 161-175. https://doi.org/10.1016/j.camwa.2009.07.062
  22. S.K. Bhakat and P. Das, (Є,Є ∨q)-fuzzy subgroup, Fuzzy Sets and Systems, 80 (1996), 359-368. https://doi.org/10.1016/0165-0114(95)00157-3
  23. O. Kazanci and S. Yamak, Generalized fuzzy bi-ideal of semigroups, Soft. Comput., 12 (2008), 1119-1124. https://doi.org/10.1007/s00500-008-0280-5
  24. Y.B. Jun and S.Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci., 176 (2006), 3079-3093. https://doi.org/10.1016/j.ins.2005.09.002
  25. M. Shabir, Y. Nawaz and M. Ali, Characterizations of Semigroups by (Є,Є ∨q)-fuzzy ideals, World Applied Sciences Journal, 13 (2011), 805-819.
  26. M. Shabir, Y.B. Jun and Y. Nawaz, Semigroups characterized by (Є,Є ∨qk)-fuzzy ideals, Comp. Math. App., 60 (2010), 1473-1493. https://doi.org/10.1016/j.camwa.2010.06.030
  27. M. Shabir and T. Mehmood, Characterizations of hemirings by (Є,Є ∨qk)-fuzzy ideals, Comp. Math. App., 61 (2011), 1059-1078. https://doi.org/10.1016/j.camwa.2010.12.056
  28. M. Aslam, S. Abdullah and N. Amin, Characterization of gamma LA-semigroups by gen- eralized fuzzy gamma ideals, Int. J.Math. Statistics, 12 (2012), 29-50.
  29. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  30. K.T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (1994), 137-142. https://doi.org/10.1016/0165-0114(94)90229-1
  31. K.T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31 (1989), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
  32. R. Biswas, it Intuitionistic fuzzy subgroups, Mathematical Fortum, 10 (1989), 37-46.
  33. K.H. Kim and Y.B. Jun, Intuitionistic fuzzy ideals in semigroups, Indian J. pure Appl. Math., 33 (2002), 443-449.
  34. K.H. Kim and J.G. Lee, On intuitionistic fuzzy bi-ideals of semigroups, Turk. J. Math. 29 (2005), 201-210.
  35. K.H. Kim and Y.B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. Math. Anal., 27 (2001), 261-267. https://doi.org/10.1155/S0161171201010778
  36. D. Coker and M. Demirci, On intuitionistic fuzzy points , Notes IVIFS, 1 (1995), 79-84.
  37. Y.B. Jun, On (Φ, Ψ)-intuitionistic Fuzzy Subgroups, KYUNGPOOK Math. J., 45 (2005), 87-94.
  38. S. Abdullah and M. Aslam, (Φ, Ψ)-intuitionistic fuzzy ideals in semigroups, Italian J. Pure Appl. Math., 32 (In press).
  39. S. Abdullah, B. davvaz and M. Aslam, (α, β)-intuitionistic fuzzy ideals of hemirings, Computer and Mathematics with Applications, 62 (2011), 3077-3090. https://doi.org/10.1016/j.camwa.2011.08.021
  40. J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
  41. M. Aslam and S. Abdullah, Direct product of intuitionistic fuzzy sets in LA-semigroups-, Italian J. Pure and Appl. Math., 33( In press).
  42. L.A. Zadeh, The concept of a lingusistic variable and its application to approximate reasoning, Information Sciences, 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5
  43. M. Shabir and I.A. Khan, Interval-valued fuzzy ideals generated by an interval valued fuzzy subset in ordered semigroups, Mathware Soft Computin, 15 (2008), 263-272.
  44. A. Narayanam and T. Manikantan, Interval-valued fuzzy ideals generated by an interval valued fuzzy subset in semigroups, J. App. Math. Computing, 20 (2006), 455-464. https://doi.org/10.1007/BF02831952