DOI QR코드

DOI QR Code

THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN

JEON, YISEUL;IM, MYUNGSHIN;PAK, SOOJONG;HYUN, MINHEE;KIM, SANGHYUK;KIM, YONGJUNG;LEE, HYE-IN;PARK, WOOJIN

  • Received : 2015.09.01
  • Accepted : 2016.01.10
  • Published : 2016.02.29

Abstract

Multiple color selection techniques are successful in identifying quasars from wide-field broadband imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ~ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δz/(1 + z) = 0.002 - 0.026. The selection technique can be extended to z ~ 7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.

Keywords

observations:quasars:general;quasars:supermassive black holes;surveys

References

  1. Bertin, E. 2006, Automatic Astrometric and Photometric Calibration with SCAMP, ADASS XV, 351, 112
  2. Bertin, E., & Arnouts, S. 1996, SExtractor: Software for source extraction, A&AS, 117, 393 https://doi.org/10.1051/aas:1996164
  3. Burrows, A., Sudarsky, D., & Hubeny, I. 2006, L and T Dwarf Models and the L to T Transition, ApJ, 640, 1063 https://doi.org/10.1086/500293
  4. Carilli, C. L., Wang, R., Fan, X., et al. 2010, Ionization Near Zones Associated with Quasars at z ∼ 6, ApJ, 714, 834 https://doi.org/10.1088/0004-637X/714/1/834
  5. Choi, N., Park, W.-K., Lee, H.-I., et al. 2015, A New AutoGuiding System for CQUEAN, JKAS, 48, 177
  6. Cool, R. J., Kochanek, C. S., Eisenstein, D. J., et al. 2006, The Discovery of Three New z > 5 Quasars in the AGN and Galaxy Evolution Survey, ApJ, 132, 823 https://doi.org/10.1086/505535
  7. De Rosa, G., Decarli, R., Walter, F., et al. 2011, Evidence for Non-evolving Fe II/Mg II Ratios in Rapidly Accreting z ∼ 6 QSOs, ApJ, 739, 56 https://doi.org/10.1088/0004-637X/739/2/56
  8. De Rosa, G., Venemans, B. P., Decarli, R., et al. 2014, Black Hole Mass Estimates and Emission-Line Roperties of a Sample of Redshift z > 6.5 Quasars, ApJ, 790, 145 https://doi.org/10.1088/0004-637X/790/2/145
  9. Fan, X., Narayanan, V. K., Lupton, R. H., et al. 2001, A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6, ApJ, 122, 2833 https://doi.org/10.1086/324111
  10. Fan, X., Strauss, M. A., Schneider, D. P., et al. 2003, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6, ApJ, 125, 1649 https://doi.org/10.1086/368246
  11. Fan, X., Hennawi, J. F., Richards, G. T., et al. 2004, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. III. Discovery of Five Additional Quasars, ApJ, 128, 515 https://doi.org/10.1086/422434
  12. Fan, X., Strauss, M. A., Richards, G. T., et al. 2006, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars, ApJ, 131, 1203 https://doi.org/10.1086/500296
  13. Fan, X., Strauss, M. A., Becker, R. H., et al. 2006, Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars, ApJ, 132, 117 https://doi.org/10.1086/504836
  14. Flesch, E. W. 2015, The Half Million Quasars (HMQ) Catalogue, PASA, 32, e010 https://doi.org/10.1017/pasa.2015.10
  15. Gunn, J. E., & Stryker, L. L. 1983, Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A, ApJS, 52, 121 https://doi.org/10.1086/190861
  16. Im, M., Choi, C., & Kim, K. 2015, Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope for Education and Research at Seoul National University, JKAS, 48, 207
  17. Ikeda, H., Nagao, T., Matsuoka, K., et al. 2012, Constraints on the Faint End of the Quasar Luminosity Function at z ∼ 5 in the COSMOS Field, ApJ, 756, 160 https://doi.org/10.1088/0004-637X/756/2/160
  18. Jiang, L., Fan, X., Vestergaard, M., et al. 2007, Gemini Near-Infrared Spectroscopy of Luminous z ∼ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption, ApJ, 134, 1150 https://doi.org/10.1086/520811
  19. Jiang, L., Fan, X., Annis, J., et al. 2008, A Survey of z ∼ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. A Flux-Limited Sample at zAB < 21, ApJ, 135, 1057 https://doi.org/10.1088/0004-6256/135/3/1057
  20. Jiang, L., Fan, X., Bian, F., et al. 2009, A Survey of z ∼ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. II. Discovery of Six Quasars at zAB>21, ApJ, 138, 305 https://doi.org/10.1088/0004-6256/138/1/305
  21. Jiang, L., McGreer, I. D., Fan, X., et al. 2015, Discovery of Eight z ∼ 6 Quasars in the Sloan Digital Sky Survey Overlap Regions, ApJ, 149, 188 https://doi.org/10.1088/0004-6256/149/6/188
  22. Juarez, Y., Maiolino, R., Mujica, R., et al. 2009, The metallicity of the most distant quasars, A&A, 494, L25 https://doi.org/10.1051/0004-6361:200811415
  23. Jun, H. D., Im, M., Lee, H. M., et al. 2015, Rest-Frame Optical Spectra and Black Hole Masses of 3 <z<6 Quasars, ApJ, 806, 109 https://doi.org/10.1088/0004-637X/806/1/109
  24. Kim, E., Park, W.-K., Jeong, H., et al. 2011, Auto-Guiding System for CQUEAN (Camera for Quasars in Early Universe), JKAS, 44, 115
  25. Kurk, J. D., Walter, F., Fan, X., et al. 2007, Black Hole Masses and Enrichment of z ∼ 6 SDSS Quasars, ApJ, 669, 32 https://doi.org/10.1086/521596
  26. Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, The UKIRT Infrared Deep Sky Survey (UKIDSS), MNRAS, 379, 1599 https://doi.org/10.1111/j.1365-2966.2007.12040.x
  27. Lim, J., Chang, S., Pak, S., et al. 2013, Focal Reducer for CQUEAN (Camera for QUasars in EArly uNiverse), JKAS, 46, 161
  28. Madau, P., Ferguson, H. C., Dickinson, M. E., et al. 1996, High-Redshift Galaxies in the Hubble Deep Field: Colour Selection and Star Formation History to z ∼ 4, MNRAS, 283, 1388 https://doi.org/10.1093/mnras/283.4.1388
  29. Mahabal, A., Stern, D., Bogosavljević, M., Djorgovski, S. G., & Thompson, D. 2005, Discovery of an Optically Faint Quasar at z = 5.70 and Implications for the Faint Endof the Quasar Luminosity Function, ApJ, 634, L9 https://doi.org/10.1086/498847
  30. Matute, I., Masegosa, J., Márquez, I., et al. 2013, The ALHAMBRA Survey: Discovery of a Faint QSO at z = 5.41, A&A, 557, A78 https://doi.org/10.1051/0004-6361/201321920
  31. McGreer, I. D., Mesinger, A., & Fan, X. 2011, The First (nearly) Model-Independent Constraint on the Neutral Hydrogen Fraction at z ∼ 6, MNRAS, 415, 3237 https://doi.org/10.1111/j.1365-2966.2011.18935.x
  32. McGreer, I. D., Jiang, L., Fan, X., et al. 2013, The z = 5 Quasar Luminosity Function from SDSS Stripe 82, ApJ, 768, 105 https://doi.org/10.1088/0004-637X/768/2/105
  33. Moles, M., Benítez, N., Aguerri, J. A. L., et al. 2008, The Alhambra Survey: a Large Area Multimedium-Band Optical and Near-Infrared Photometric Survey, ApJ, 136, 1325 https://doi.org/10.1088/0004-6256/136/3/1325
  34. Mortlock, D. J., Patel, M., Warren, S. J., et al. 2009, Discovery of a Redshift 6.13 Quasar in the UKIRT Infrared Deep Sky Survey, A&A, 505, 97 https://doi.org/10.1051/0004-6361/200811161
  35. Mortlock, D. J., Warren, S. J., Venemans, B. P., et al. 2011, A Luminous Quasar at a Redshift of z = 7.085, Nature, 474, 616 https://doi.org/10.1038/nature10159
  36. Oke, J. B. 1990, Faint Spectrophotometric Standard Stars, ApJ, 99, 1621 https://doi.org/10.1086/115444
  37. Park, W.-K., Pak, S., Im, M., et al. 2012, Camera for Quasars in Early Universe (CQUEAN), PASP, 124, 839 https://doi.org/10.1086/667390
  38. Richards, G. T., Fan, X., Newberg, H. J., et al. 2002, Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample, ApJ, 123, 2945 https://doi.org/10.1086/340187
  39. Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009, Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey. II. 1,000,000 Quasars from Data Release 6, ApJS, 180, 67 https://doi.org/10.1088/0067-0049/180/1/67
  40. Richards, G. T., Myers, A. D., Peters, C. M., et al. 2015, Bayesian High-Redshift Quasar Classification from Optical and Mid-IR Photometry, arXiv:1507.07788
  41. Schneider, D. P., Fan, X., Strauss, M. A., et al. 2001, High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. V. Hobby-Eberly Telescope Observations, ApJ, 121, 1232 https://doi.org/10.1086/319422
  42. Sharp, R. G., McMahon, R. G., Irwin, M. J., & Hodgkin, S. T. 2001, First Results from the Isaac Newton Telescope Wide Angle Survey: the z > 5 Quasar Survey, MNRAS, 326, L45 https://doi.org/10.1111/j.1365-2966.2001.04845.x
  43. Shim, H., Im, M., Choi, P., Yan, L., & Storrie-Lombardi, L. 2007, Massive Lyman Break Galaxies at z ∼ 3 in the Spitzer Extragalactic First Look Survey, ApJ, 669, 749 https://doi.org/10.1086/522105
  44. Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, Composite Quasar Spectra from the Sloan Digital Sky Survey, ApJ, 122, 549 https://doi.org/10.1086/321167
  45. Willott, C. J., Delorme, P., Omont, A., et al. 2007, Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey, ApJ, 134, 2435 https://doi.org/10.1086/522962
  46. Willott, C. J., Delorme, P., Reylé, C., et al. 2009, Six More Quasars at Redshift 6 Discovered by the Canada-France High-z Quasar Survey, ApJ, 137, 3541 https://doi.org/10.1088/0004-6256/137/3/3541
  47. Willott, C. J., Delorme, P., Reylé, C., et al. 2010, The Canada-France High-z Quasar Survey: Nine New Quasars and the Luminosity Function at Redshift 6, ApJ, 139, 906 https://doi.org/10.1088/0004-6256/139/3/906
  48. Wu, X.-B., & Jia, Z. 2010, Quasar Candidate Selection and Photometric Redshift Estimation Based on SDSS and UKIDSS Data, MNRAS, 406, 1583
  49. Yi, W., Wu, X., Wang, F., et al. 2015, Discovery of Two Broad Absorption Line Quasars at Redshift about 4.75 Using the Lijiang 2.4 m telescope, Science China Physics, Mechanics, and Astronomy, 58, 5685
  50. Zheng, W., Tsvetanov, Z. I., Schneider, D. P., et al. 2000, Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey, ApJ, 120, 1607 https://doi.org/10.1086/301570

Cited by

  1. The Infrared Medium-deep Survey. III. Survey of Luminous Quasars at 4.7 ≤ z ≤ 5.4 vol.231, pp.2, 2017, https://doi.org/10.3847/1538-4365/aa7de5
  2. Development of SED Camera for Quasars in Early Universe (SQUEAN) vol.128, pp.969, 2016, https://doi.org/10.1088/1538-3873/128/969/115004
  3. An Optically Faint Quasar Survey at z ∼ 5 in the CFHTLS Wide Field: Estimates of the Black Hole Masses and Eddington Ratios vol.846, pp.1, 2017, https://doi.org/10.3847/1538-4357/aa83ae
  4. ∼ 5 with a Medium-band-based Approach vol.870, pp.2, 2019, https://doi.org/10.3847/1538-4357/aaf387