• Received : 2015.09.01
  • Accepted : 2016.01.10
  • Published : 2016.02.29


Multiple color selection techniques are successful in identifying quasars from wide-field broadband imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ~ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δz/(1 + z) = 0.002 - 0.026. The selection technique can be extended to z ~ 7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.


observations:quasars:general;quasars:supermassive black holes;surveys


  1. Bertin, E. 2006, Automatic Astrometric and Photometric Calibration with SCAMP, ADASS XV, 351, 112
  2. Bertin, E., & Arnouts, S. 1996, SExtractor: Software for source extraction, A&AS, 117, 393
  3. Burrows, A., Sudarsky, D., & Hubeny, I. 2006, L and T Dwarf Models and the L to T Transition, ApJ, 640, 1063
  4. Carilli, C. L., Wang, R., Fan, X., et al. 2010, Ionization Near Zones Associated with Quasars at z ∼ 6, ApJ, 714, 834
  5. Choi, N., Park, W.-K., Lee, H.-I., et al. 2015, A New AutoGuiding System for CQUEAN, JKAS, 48, 177
  6. Cool, R. J., Kochanek, C. S., Eisenstein, D. J., et al. 2006, The Discovery of Three New z > 5 Quasars in the AGN and Galaxy Evolution Survey, ApJ, 132, 823
  7. De Rosa, G., Decarli, R., Walter, F., et al. 2011, Evidence for Non-evolving Fe II/Mg II Ratios in Rapidly Accreting z ∼ 6 QSOs, ApJ, 739, 56
  8. De Rosa, G., Venemans, B. P., Decarli, R., et al. 2014, Black Hole Mass Estimates and Emission-Line Roperties of a Sample of Redshift z > 6.5 Quasars, ApJ, 790, 145
  9. Fan, X., Narayanan, V. K., Lupton, R. H., et al. 2001, A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6, ApJ, 122, 2833
  10. Fan, X., Strauss, M. A., Schneider, D. P., et al. 2003, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6, ApJ, 125, 1649
  11. Fan, X., Hennawi, J. F., Richards, G. T., et al. 2004, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. III. Discovery of Five Additional Quasars, ApJ, 128, 515
  12. Fan, X., Strauss, M. A., Richards, G. T., et al. 2006, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars, ApJ, 131, 1203
  13. Fan, X., Strauss, M. A., Becker, R. H., et al. 2006, Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars, ApJ, 132, 117
  14. Flesch, E. W. 2015, The Half Million Quasars (HMQ) Catalogue, PASA, 32, e010
  15. Gunn, J. E., & Stryker, L. L. 1983, Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A, ApJS, 52, 121
  16. Im, M., Choi, C., & Kim, K. 2015, Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope for Education and Research at Seoul National University, JKAS, 48, 207
  17. Ikeda, H., Nagao, T., Matsuoka, K., et al. 2012, Constraints on the Faint End of the Quasar Luminosity Function at z ∼ 5 in the COSMOS Field, ApJ, 756, 160
  18. Jiang, L., Fan, X., Vestergaard, M., et al. 2007, Gemini Near-Infrared Spectroscopy of Luminous z ∼ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption, ApJ, 134, 1150
  19. Jiang, L., Fan, X., Annis, J., et al. 2008, A Survey of z ∼ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. A Flux-Limited Sample at zAB < 21, ApJ, 135, 1057
  20. Jiang, L., Fan, X., Bian, F., et al. 2009, A Survey of z ∼ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. II. Discovery of Six Quasars at zAB>21, ApJ, 138, 305
  21. Jiang, L., McGreer, I. D., Fan, X., et al. 2015, Discovery of Eight z ∼ 6 Quasars in the Sloan Digital Sky Survey Overlap Regions, ApJ, 149, 188
  22. Juarez, Y., Maiolino, R., Mujica, R., et al. 2009, The metallicity of the most distant quasars, A&A, 494, L25
  23. Jun, H. D., Im, M., Lee, H. M., et al. 2015, Rest-Frame Optical Spectra and Black Hole Masses of 3 <z<6 Quasars, ApJ, 806, 109
  24. Kim, E., Park, W.-K., Jeong, H., et al. 2011, Auto-Guiding System for CQUEAN (Camera for Quasars in Early Universe), JKAS, 44, 115
  25. Kurk, J. D., Walter, F., Fan, X., et al. 2007, Black Hole Masses and Enrichment of z ∼ 6 SDSS Quasars, ApJ, 669, 32
  26. Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, The UKIRT Infrared Deep Sky Survey (UKIDSS), MNRAS, 379, 1599
  27. Lim, J., Chang, S., Pak, S., et al. 2013, Focal Reducer for CQUEAN (Camera for QUasars in EArly uNiverse), JKAS, 46, 161
  28. Madau, P., Ferguson, H. C., Dickinson, M. E., et al. 1996, High-Redshift Galaxies in the Hubble Deep Field: Colour Selection and Star Formation History to z ∼ 4, MNRAS, 283, 1388
  29. Mahabal, A., Stern, D., Bogosavljević, M., Djorgovski, S. G., & Thompson, D. 2005, Discovery of an Optically Faint Quasar at z = 5.70 and Implications for the Faint Endof the Quasar Luminosity Function, ApJ, 634, L9
  30. Matute, I., Masegosa, J., Márquez, I., et al. 2013, The ALHAMBRA Survey: Discovery of a Faint QSO at z = 5.41, A&A, 557, A78
  31. McGreer, I. D., Mesinger, A., & Fan, X. 2011, The First (nearly) Model-Independent Constraint on the Neutral Hydrogen Fraction at z ∼ 6, MNRAS, 415, 3237
  32. McGreer, I. D., Jiang, L., Fan, X., et al. 2013, The z = 5 Quasar Luminosity Function from SDSS Stripe 82, ApJ, 768, 105
  33. Moles, M., Benítez, N., Aguerri, J. A. L., et al. 2008, The Alhambra Survey: a Large Area Multimedium-Band Optical and Near-Infrared Photometric Survey, ApJ, 136, 1325
  34. Mortlock, D. J., Patel, M., Warren, S. J., et al. 2009, Discovery of a Redshift 6.13 Quasar in the UKIRT Infrared Deep Sky Survey, A&A, 505, 97
  35. Mortlock, D. J., Warren, S. J., Venemans, B. P., et al. 2011, A Luminous Quasar at a Redshift of z = 7.085, Nature, 474, 616
  36. Oke, J. B. 1990, Faint Spectrophotometric Standard Stars, ApJ, 99, 1621
  37. Park, W.-K., Pak, S., Im, M., et al. 2012, Camera for Quasars in Early Universe (CQUEAN), PASP, 124, 839
  38. Richards, G. T., Fan, X., Newberg, H. J., et al. 2002, Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample, ApJ, 123, 2945
  39. Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009, Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey. II. 1,000,000 Quasars from Data Release 6, ApJS, 180, 67
  40. Richards, G. T., Myers, A. D., Peters, C. M., et al. 2015, Bayesian High-Redshift Quasar Classification from Optical and Mid-IR Photometry, arXiv:1507.07788
  41. Schneider, D. P., Fan, X., Strauss, M. A., et al. 2001, High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. V. Hobby-Eberly Telescope Observations, ApJ, 121, 1232
  42. Sharp, R. G., McMahon, R. G., Irwin, M. J., & Hodgkin, S. T. 2001, First Results from the Isaac Newton Telescope Wide Angle Survey: the z > 5 Quasar Survey, MNRAS, 326, L45
  43. Shim, H., Im, M., Choi, P., Yan, L., & Storrie-Lombardi, L. 2007, Massive Lyman Break Galaxies at z ∼ 3 in the Spitzer Extragalactic First Look Survey, ApJ, 669, 749
  44. Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, Composite Quasar Spectra from the Sloan Digital Sky Survey, ApJ, 122, 549
  45. Willott, C. J., Delorme, P., Omont, A., et al. 2007, Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey, ApJ, 134, 2435
  46. Willott, C. J., Delorme, P., Reylé, C., et al. 2009, Six More Quasars at Redshift 6 Discovered by the Canada-France High-z Quasar Survey, ApJ, 137, 3541
  47. Willott, C. J., Delorme, P., Reylé, C., et al. 2010, The Canada-France High-z Quasar Survey: Nine New Quasars and the Luminosity Function at Redshift 6, ApJ, 139, 906
  48. Wu, X.-B., & Jia, Z. 2010, Quasar Candidate Selection and Photometric Redshift Estimation Based on SDSS and UKIDSS Data, MNRAS, 406, 1583
  49. Yi, W., Wu, X., Wang, F., et al. 2015, Discovery of Two Broad Absorption Line Quasars at Redshift about 4.75 Using the Lijiang 2.4 m telescope, Science China Physics, Mechanics, and Astronomy, 58, 5685
  50. Zheng, W., Tsvetanov, Z. I., Schneider, D. P., et al. 2000, Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey, ApJ, 120, 1607

Cited by

  1. The Infrared Medium-deep Survey. III. Survey of Luminous Quasars at 4.7 ≤ z ≤ 5.4 vol.231, pp.2, 2017,
  2. Development of SED Camera for Quasars in Early Universe (SQUEAN) vol.128, pp.969, 2016,
  3. An Optically Faint Quasar Survey at z ∼ 5 in the CFHTLS Wide Field: Estimates of the Black Hole Masses and Eddington Ratios vol.846, pp.1, 2017,
  4. ∼ 5 with a Medium-band-based Approach vol.870, pp.2, 2019,