DOI QR코드

DOI QR Code

KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES

KIM, SEUNG-LEE;LEE, CHUNG-UK;PARK, BYEONG-GON;KIM, DONG-JIN;CHA, SANG-MOK;LEE, YONGSEOK;HAN, CHEONGHO;CHUN, MOO-YOUNG;YUK, INSOO

  • Received : 2015.11.18
  • Accepted : 2016.01.16
  • Published : 2016.02.29

Abstract

The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

Keywords

telescopes:KMTNet;techniques:photometric;surveys:wide-field;stars:planetary systems

References

  1. Atwood, B., O'Brien, T. P., Colarosa, C., et al. 2012, Design of the KMTNet Large Format CCD Camera, Proc. SPIE, 8446-6G
  2. Beaulieu, J.-P., Bennett, D. P., Fouque, P., et al. 2006, Discovery of a Cool Planet of 5.5 Earth Masses through Gravitational Microlensing, Nature, 439, 437 https://doi.org/10.1038/nature04441
  3. Bond, I. A., Udalski, A., Jaroszynski, M., et al. 2004, OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event, ApJ, 606, L155 https://doi.org/10.1086/420928
  4. Brown, T. M., Baliber, N., Bianco, F. B., et al. 2013, Las Cumbres Observatory Global Telescope Network, PASP, 125, 1031 https://doi.org/10.1086/673168
  5. Gaudi, B. S. 2012, Microlensing Surveys for Exoplanets, ARAA, 50, 41 https://doi.org/10.1146/annurev-astro-081811-125518
  6. Gaudi, B. S., Bennett, D. P., Udalski, A., et al. 2008, Discovery of a Jupiter/Saturn Analog with Gravitational Mi crolensing, Science, 319, 927 https://doi.org/10.1126/science.1151947
  7. Gaudi, B. S., Beaulieu, J.-P., Bennett, D. P., et al. 2010, The Demographics of Extrasolar Planets Beyond Snow Line with Ground-based Microlensing Surveys, Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers, no. 85
  8. Henderson, C. B., Gaudi, B. S., Han, C., et al. 2014, Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network, ApJ, 794, 52 https://doi.org/10.1088/0004-637X/794/1/52
  9. Kaiser, N., Burgett, W., Chambers, K., et al. 2010, The Pan-STARRS Wide-Field Optical/NIR Imaging Survey, Proc. SPIE, 7733-0E
  10. Kappler, N., Kappler, L., Poteet, W. M., et al. 2012, Prototype Enclosure Design for the Korea Microlensing Telescope Network (KMTNet), Proc. SPIE, 8444-43
  11. Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, The SkyMapper Telescope and The Southern Sky Survey, PASA, 24, 1 https://doi.org/10.1071/AS07001
  12. Kim, S.-L., Park, B.-G., Lee, C.-U., et al. 2010, Technical Specifications of the KMTNet Observation System, Proc. SPIE, 7733-3F
  13. Kim, S.-L., Park, B.-G., Lee, C.-U., et al. 2011, Wide-Field Telescope Design for the KMTNet Project, Proc. SPIE, 8151-1B
  14. Kim, D.-J., Lee, C.-U., & Kim, S.-L. 2015, Data Transfer Test for the KMTNet Data, PKAS, 30, 31 (in Korean)
  15. Lee, C.-U., et al. 2016, JKAS, to be submitted
  16. Mao, S., & Paczynśki, B. 1991, Gravitational Microlensing by Double Stars and Planetary Systems, ApJ, 374, L37 https://doi.org/10.1086/186066
  17. Park, B.-G., Kim, S.-L., Lee, J. W., et al. 2012, Korea Microlensing Telescope Network: Science Cases, Proc. SPIE, 8444-47
  18. Poteet, W. M., Cauthen, H. K., Kappler, N., et al. 2012, Design and Fabrication of Three 1.6-meter Telescopes for the Korea Microlensing Telescope Network (KMTNet), Proc. SPIE, 8444-5S
  19. Schneider, J., Dedieu, C., Le Sidaner, P., et al. 2011, Defining and Cataloging Exoplanets: the exoplanet.eu Database, A&A, 532, A79 https://doi.org/10.1051/0004-6361/201116713
  20. Skrutskie, M. F., Schneider, S. E., Stiening, R., et al. 1997, The Two Micron All Sky Survey (2MASS): Overview and Status, ASSL, 210, 25
  21. Soszyński, I, Dziembowski, W. A., Udalski, A., et al. 2011, The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XI. RR Lyrae Stars in the Galactic Bulge, Acta Astron., 61, 1
  22. Sumi, T., Kamiya, K., Bennett, D. P., et al. 2011, Unbound or Distant Planetary Mass Population Detected by Gravitational Microlensing, Nature, 473, 349 https://doi.org/10.1038/nature10092
  23. Tsapras, Y., Street, R., Horne, K., et al. 2009, RoboNetII: Follow-up Observations of Microlensing Events with a Robotic Network of Telescopes, AN, 330, 4
  24. Tyson, J. A. 2010, Optical Synoptic Telescopes: New Frontiers, Proc. SPIE, 7733-03
  25. Udalski, A., Szymanski, M., Stanek, K. Z., et al. 1994, The Optical Gravitational Lensing Experiment. The Optical Depth to Gravitational Microlensing in the Direction of the Galactic Bulge, Acta Astron., 44, 165
  26. Udalski, A., Szymanski, M. K., & Szymanski, G. 2015, OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment, Acta Astron., 65, 1
  27. Vucina, T., Boccas, M., Araya, C., Ah Hee, C., & Cavedoni, C. 2008, Gemini Primary Mirror In-Situ Wash, Proc. SPIE, 7012-2Q
  28. Wolszczan, A., & Frail, D. A. 1992, A Planetary System around the Millisecond Pulsar PSR1257+12, Nature, 355, 145 https://doi.org/10.1038/355145a0
  29. Woźniak, P. R. 2000, Difference Image Analysis of the OGLE-II Bulge Data. I. The Method, Acta Astron., 50, 421

Cited by

  1. An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf vol.840, pp.1, 2017, https://doi.org/10.3847/2041-8213/aa6d09
  2. Discovery of a Rapid, Luminous Nova in NGC 300 by the KMTNet Supernova Program vol.844, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa706b
  3. OGLE-2016-BLG-1003: First Resolved Caustic-crossing Binary-source Event Discovered by Second-generation Microlensing Surveys vol.841, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa7057
  4. SPITZEROBSERVATIONS OF OGLE-2015-BLG-1212 REVEAL A NEW PATH TOWARD BREAKING STRONG MICROLENS DEGENERACIES vol.820, pp.1, 2016, https://doi.org/10.3847/0004-637X/820/1/79
  5. OGLE-2012-BLG-0950Lb: THE FIRST PLANET MASS MEASUREMENT FROM ONLY MICROLENS PARALLAX AND LENS FLUX vol.153, pp.1, 2016, https://doi.org/10.3847/1538-3881/153/1/1
  6. OGLE-2016-BLG-0596Lb: A High-mass Planet from a High-magnification Pure-survey Microlensing Event vol.153, pp.4, 2017, https://doi.org/10.3847/1538-3881/aa5da2
  7. Free-floating planets from core accretion theory: microlensing predictions vol.461, pp.1, 2016, https://doi.org/10.1093/mnrasl/slw110
  8. OGLE-2015-BLG-0051/KMT-2015-BLG-0048LB: A GIANT PLANET ORBITING A LOW-MASS BULGE STAR DISCOVERED BY HIGH-CADENCE MICROLENSING SURVEYS vol.152, pp.4, 2016, https://doi.org/10.3847/0004-6256/152/4/95
  9. Detections of Planets in Binaries Through the Channel of Chang–Refsdal Gravitational Lensing Events vol.835, pp.2, 2017, https://doi.org/10.3847/1538-4357/835/2/115
  10. Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb vol.466, pp.3, 2017, https://doi.org/10.1093/mnras/stw3185
  11. OGLE-2015-BLG-1482L: The First Isolated Low-mass Microlens in the Galactic Bulge vol.838, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa67fa
  12. Campaign 9 of theK2Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey vol.128, pp.970, 2016, https://doi.org/10.1088/1538-3873/128/970/124401
  13. Photometric Properties of the HW Vir-type Binary OGLE-GD-ECL-11388 vol.129, pp.971, 2017, https://doi.org/10.1088/1538-3873/129/971/014202
  14. The lowest mass ratio planetary microlens: OGLE 2016–BLG–1195Lb vol.469, pp.2, 2017, https://doi.org/10.1093/mnras/stx1049
  15. Characterization of Near-Earth Asteroids Using KMTNET-SAAO vol.154, pp.4, 2017, https://doi.org/10.3847/1538-3881/aa88be
  16. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING vol.825, pp.1, 2016, https://doi.org/10.3847/0004-637X/825/1/60
  17. MOA Data Reveal a New Mass, Distance, and Relative Proper Motion for Planetary System OGLE-2015-BLG-0954L vol.154, pp.2, 2017, https://doi.org/10.3847/1538-3881/aa7aee
  18. OGLE-2016-BLG-0263Lb: Microlensing Detection of a Very Low-mass Binary Companion through a Repeating Event Channel vol.154, pp.4, 2017, https://doi.org/10.3847/1538-3881/aa859a
  19. OGLE-2016-BLG-1469L: Microlensing Binary Composed of Brown Dwarfs vol.843, pp.1, 2017, https://doi.org/10.3847/1538-4357/aa740e
  20. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars vol.605, 2017, https://doi.org/10.1051/0004-6361/201730560
  21. SPACE-BASED MICROLENS PARALLAX OBSERVATION AS A WAY TO RESOLVE THE SEVERE DEGENERACY BETWEEN MICROLENS-PARALLAX AND LENS-ORBITAL EFFECTS vol.827, pp.1, 2016, https://doi.org/10.3847/0004-637X/827/1/11
  22. Ground-based Parallax Confirmed by Spitzer: Binary Microlensing Event MOA-2015-BLG-020 vol.845, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa813b
  23. A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys vol.155, pp.3, 2018, https://doi.org/10.3847/1538-3881/aaaae9
  24. KMT-2016-BLG-1397b: KMTNET-only Discovery of a Microlens Giant Planet vol.156, pp.5, 2018, https://doi.org/10.3847/1538-3881/aae537
  25. KMTNet Nearby Galaxy Survey. I. Optimal Strategy for Low Surface Brightness Imaging with KMTNet vol.156, pp.6, 2018, https://doi.org/10.3847/1538-3881/aae647
  26. OGLE-2017-BLG-0039: Microlensing Event with Light from a Lens Identified from Mass Measurement vol.867, pp.2, 2018, https://doi.org/10.3847/1538-4357/aae536
  27. Long Journey toward the Detection of Gravitational Waves and New Era of Gravitational Wave Astrophysics vol.73, pp.6, 2018, https://doi.org/10.3938/jkps.73.684
  28. Microlensing Searches for Exoplanets vol.8, pp.10, 2018, https://doi.org/10.3390/geosciences8100365
  29. The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs vol.156, pp.5, 2018, https://doi.org/10.3847/1538-3881/aadfd8
  30. KMT-2016-BLG-1820 and KMT-2016-BLG-2142: Two Microlensing Binaries Composed of Planetary-mass Companions and Very-low-mass Primaries vol.156, pp.5, 2018, https://doi.org/10.3847/1538-3881/aae319
  31. MOA-2016-BLG-319Lb: Microlensing Planet Subject to Rare Minor-image Perturbation Degeneracy in Determining Planet Parameters vol.156, pp.5, 2018, https://doi.org/10.3847/1538-3881/aae38e
  32. DR2 vol.617, pp.1432-0746, 2018, https://doi.org/10.1051/0004-6361/201833527
  33. MOA-2015-BLG-337: A Planetary System with a Low-mass Brown Dwarf/Planetary Boundary Host, or a Brown Dwarf Binary vol.156, pp.3, 2018, https://doi.org/10.3847/1538-3881/aad5ee
  34. KMT-2016-BLG-2052L: Microlensing Binary Composed of M Dwarfs Revealed from a Very Long Timescale Event vol.865, pp.1, 2018, https://doi.org/10.3847/1538-4357/aad699
  35. 2C9-CFHT Multi-color Microlensing Survey vol.130, pp.992, 2018, https://doi.org/10.1088/1538-3873/aadcd3
  36. OGLE-2017-BLG-0537: A Microlensing Event with a Resolvable Lens in ≲5 years from High-resolution Follow-up Observations vol.863, pp.1, 2018, https://doi.org/10.3847/1538-4357/aacef9
  37. OGLE-2016-BLG-1045: A Test of Cheap Space-based Microlens Parallaxes vol.863, pp.1, 2018, https://doi.org/10.3847/1538-4357/aacdf4
  38. Taxonomy and Light-curve Data of 1000 Serendipitously Observed Main-belt Asteroids vol.237, pp.1, 2018, https://doi.org/10.3847/1538-4365/aac38f
  39. OGLE-2015-BLG-1459L: The Challenges of Exo-moon Microlensing vol.155, pp.6, 2018, https://doi.org/10.3847/1538-3881/aac2cb
  40. Opens New Path to Break Classic Degeneracy for Jupiter-mass Microlensing Planet OGLE-2017-BLG-1140Lb vol.155, pp.6, 2018, https://doi.org/10.3847/1538-3881/aac21c
  41. A Likely Detection of a Two-planet System in a Low-magnification Microlensing Event vol.155, pp.6, 2018, https://doi.org/10.3847/1538-3881/aabd7a
  42. OGLE-2017-BLG-1522: A Giant Planet around a Brown Dwarf Located in the Galactic Bulge vol.155, pp.5, 2018, https://doi.org/10.3847/1538-3881/aabb51
  43. OGLE-2016-BLG-1266: A Probable Brown Dwarf/Planet Binary at the Deuterium Fusion Limit vol.858, pp.2, 2018, https://doi.org/10.3847/1538-4357/aabf3f
  44. Difference in Dwarf Galaxy Surface Brightness Profiles as a Function of Environment vol.859, pp.1, 2018, https://doi.org/10.3847/1538-4357/aabc53
  45. OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations vol.859, pp.2, 2018, https://doi.org/10.3847/1538-4357/aabd87
  46. KMTNet Time-series Photometry of the Doubly Eclipsing Binary Stars Located in the Large Magellanic Cloud vol.130, pp.987, 2018, https://doi.org/10.1088/1538-3873/aab428
  47. UKIRT-2017-BLG-001Lb: A Giant Planet Detected through the Dust vol.857, pp.1, 2018, https://doi.org/10.3847/2041-8213/aab71b
  48. ) Data Release vol.155, pp.5, 2018, https://doi.org/10.3847/1538-3881/aab76c
  49. OGLE-2017-BLG-0482Lb: A Microlensing Super-Earth Orbiting a Low-mass Host Star vol.155, pp.5, 2018, https://doi.org/10.3847/1538-3881/aabad2
  50. Microlensing Parallax for OGLE-2017-BLG-0896 Reveals a Counter-rotating Low-mass Brown Dwarf vol.157, pp.3, 2019, https://doi.org/10.3847/1538-3881/aafe12
  51. Microlensing Parallax for OGLE-2016-BLG-1067: A Sub-Jupiter Orbiting an M Dwarf in the Disk vol.157, pp.3, 2019, https://doi.org/10.3847/1538-3881/ab0106
  52. Microlensing of MOA-2016-BLG-231L: A Counter-rotating Brown Dwarf Binary in the Galactic Disk vol.871, pp.2, 2019, https://doi.org/10.3847/1538-4357/aaf861
  53. Two new free-floating or wide-orbit planets from microlensing vol.622, pp.1432-0746, 2019, https://doi.org/10.1051/0004-6361/201834557
  54. Microlensing Survey. I. Bound Planet Detection Rates vol.241, pp.1, 2019, https://doi.org/10.3847/1538-4365/aafb69