DOI QR코드

DOI QR Code

A NEW METHOD TO DETERMINE THE TEMPERATURE OF CMES USING A CORONAGRAPH FILTER SYSTEM

  • CHO, KYUHYOUN ;
  • CHAE, JONGCHUL ;
  • LIM, EUN-KYUNG ;
  • CHO, KYUNG-SUK ;
  • BONG, SU-CHAN ;
  • YANG, HEESU
  • Received : 2015.12.16
  • Accepted : 2016.02.01
  • Published : 2016.02.29

Abstract

The coronagraph is an instrument that enables the investigation of faint features in the vicinity of the Sun, particularly coronal mass ejections (CMEs). So far coronagraphic observations have been mainly used to determine the geometric and kinematic parameters of CMEs. Here, we introduce a new method for the determination of CME temperature using a two filter (4025 Å and 3934 Å) coronagraph system. The thermal motion of free electrons in CMEs broadens the absorption lines in the optical spectra that are produced by the Thomson scattering of visible light originating in the photosphere, which affects the intensity ratio at two different wavelengths. Thus the CME temperature can be inferred from the intensity ratio measured by the two filter coronagraph system. We demonstrate the method by invoking the graduated cylindrical shell (GCS) model for the 3-dimensional CME density distribution and discuss its significance.

Keywords

Sun:coronal mass ejections (CMEs);method:numerical

References

  1. Akmal, A., Raymond, J. C., Vourlidas, A., Thompson, B., Ciaravella, A., Ko, Y.-K., Uzzo, M., & Wu, R. 2001, SOHO Observations of a Coronal Mass Ejection, ApJ, 553, 922 https://doi.org/10.1086/320971
  2. Allen, C. W. 1973, Allen’s Astrophysical Quantities (London: The Athlone Press University of London)
  3. Baker, D. N., Balstad, R., Bodeau, J. M., Cameron, E., Fennell, J. F., Fisher, G. M., Forbes, K. F., Kintner, P. L., Leffler, L. G., Lewis, W. S., Reagan, J. B., Small III, A. A., Stansell, T. A., Strachan Jr. L., Graham, S. J., Fisher, T. M., Swisher, V., & Gruber, C. A. 2008, Severe Space Weather Events Understanding Societal and Economic Impacts A Workshop Report (Washington DC: The National Academies Press)
  4. Baumbach, S. 1937, Strahlung, Ergiebigkeit und Elektronendichte der Sonnenkorona, Astron. Nachrichten, 263, 120 https://doi.org/10.1002/asna.19372630602
  5. Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Moses, J. D., Socker, D. G., Dere, K. P., Lamy, P. L., Llebaria, A., Bout, M. V., Schwenn, R., Simnett, G. M., Bedford, D. K., & Eyles, C. J. 1995, The Large Angle Spectroscopic Coronagraph (LASCO), SoPh, 162, 357
  6. Ciaravella, A., Raymond, J. C., Thompson, B. J., van Ballegooijen, A., Strachan, L., Li, J., Gardner, L., O’Neal, R., Antonucci, E., Kohl, J., & Noci, G. 2000, Solar and Heliospheric Observatory Observations of a Helical Coronal Mass Ejection, ApJ, 529, 575 https://doi.org/10.1086/308260
  7. Cram, L. E. 1976, Determination of the Temperature of the Solar Corona from the Spectrum of the Electron-Scattering Continuum, SoPh, 48, 3
  8. Gopalswamy, N., Akiyama, S., Yashiro, S., & Makela, P. 2010, Coronal Mass Ejections from Sunspot and NonSunspot Regions, Magnetic Coupling between the Interior and Atmosphere of the Sun, eds. S. S. Hasan & R. J. Rutten, Astrophysics and Space Science Proceedings, 289
  9. Hannah, I. G., & Kontar, E. P. 2013, Multi-Thermal Dynamics and Energetics of a Coronal Mass Ejection in the Low Solar Atmosphere, A&A, 553, A10 https://doi.org/10.1051/0004-6361/201219727
  10. Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A., Davila, J. M., Thompson, W. T., St Cyr, O. C., Mentzell, E., Mehalick, K., Lemen, J. R., Wuelser, J. P., Duncan, D. W., Tarbell, T. D., Wolfson, C. J., Moore, A., Harrison, R. A., Waltham, N. R., Lang, J., Davis, C. J., Eyles, C. J., Mapson-Menard, H., Simnett, G. M., Halain, J. P., Defise, J. M., Mazy, E., Rochus, P., Mercier, R., Ravet, M. F., Delmotte, F., Auchere, F., Delaboudiniere, J. P., Bothmer, V., Deutsch, W.,Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., & Carter, T. 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), SSRv, 136, 67
  11. Howard, R. A., Sheeley, Jr. N. R., Koomen, M. J., & Michels, D. J. 1985, Coronal Mass Ejections: 19791981, J. Geophys. Res., 90, 8173 https://doi.org/10.1029/JA090iA09p08173
  12. Hundhausen, A. J. 1993, Sizes and Locations of Coronal Mass Ejections: SMM Observations From 1980 and 19841989, J. Geophys. Res., 98(A8), 13 https://doi.org/10.1029/92JA01837
  13. Illing, R. M. E., & Hundhausen, A. J. 1985, Observation of a Coronal Transient from 1.2 to 6 Solar Radii, J. Geophys. Res., 90, 275 https://doi.org/10.1029/JA090iA01p00275
  14. Kurucz, R. L. 2005, New Atlases for Solar Flux, Irradiance, Central Intensity, and Limb Intensity, Memorie Della Societa Astronomica Italiana Supplement, 8, 189
  15. Lee, J.-Y., Raymond, J. C., Ko, Y.-K., & Kim, K.-S. 2009, Three-Dimensional Structure and Energy Balance of a Coronal Mass Ejection, ApJ, 692, 1271 https://doi.org/10.1088/0004-637X/692/2/1271
  16. Reginald, N. L. 2001. MACS, An Instrument, and aMethodology for Simultaneous and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona, Thesis (PhD), University of Delaware, 6516
  17. Reginald, N. L., St. Cyr, O. C., Davila, J. M., Rabin, D. M., Guhathakurta, M., & Hassler, D. M. 2009, Electron-Temperature Maps of the Low Solar Corona: ISCORE Results from the Total Solar Eclipse of 29 March 2006 in Libya, SoPh, 260, 347
  18. Reginald, N. L., & Davila, J. M. 2000, MACS for Global Measurement of the SolarWind Velocity and the Thermal Electron Temperature during the Total Solar Eclipse on 11 August 1999, SoPh, 195, 111
  19. St. Cyr, O. C., Plunkett, S. P., Michels, D. J., Paswaters, S. E., Koomen, M. J., Simnett, G. M., Thompson, B. J., Gurman, J. B., Schwenn, R., Webb, D. F., Hildner, E., & Lamy, P. L. 2000, Properties of Coronal Mass Ejections: SOHO LASCO Observations from January 1996 to June 1998, J. Geophys. Res., 105(A8), 18 https://doi.org/10.1029/1999JA000381
  20. Thernisien, A. 2010, Implementation of the Graduated Cylindrical Shell Model for the Three-Dimensional Reconstruction of Coronal Mass Ejections, ApJS, 194, 33 https://doi.org/10.1088/0067-0049/194/2/33
  21. Thernisien, A. F. R., Howard, R. A., & Vourlidas, A. 2006, Modeling of Flux Rope Coronal Mass Ejections, ApJ, 652, 763 https://doi.org/10.1086/508254
  22. Tousey, R. 1973, "The solar corona", in Space Research XIII, Proceedings of Open Meetings of Working Groups on Physical Sciences of the 15th Plenary Meeting of COSPAR, Madrid, Spain, 10 24 May, 1972, Eds. Rycroft, M. J., & Runcorn, S. K. (Berlin: Akademie-Verlag), 713
  23. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B., & Howard, R. A. 2004, A Catalog of White Light Coronal Mass Ejections Observed by the SOHO Spacecraft, J. Geophys. Res., 109, A07105 https://doi.org/10.1029/2003JA010282

Acknowledgement

Grant : 우주감시기술개발

Supported by : 한국천문연구원