DOI QR코드

DOI QR Code

Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta)

Kang, Eun Ju;Kim, Kwang Young

  • 투고 : 2015.12.27
  • 심사 : 2016.03.09
  • 발행 : 2016.03.15

초록

Ulva pertusa, a common bloom-forming green alga, was used as a model system to examine the effects of elevated carbon dioxide (CO2) and temperature on growth and photosynthetic performance. To do this, U. pertusa was grown under four temperature and CO2 conditions; ambient CO2 (400 μatm) and temperature (16℃) (i.e., present), elevated temperature only (19℃) (ET; i.e., warming), elevated CO2 only (1,000 μatm) (EC; i.e., acidification), and elevated temperature and CO2 (ET and EC; i.e., greenhouse), and its steady state photosynthetic performance evaluated. Maximum gross photosynthetic rates (GPmax) were highest under EC conditions and lowest under ET conditions. Further, ET conditions resulted in decreased rate of dark respiration (Rd), but growth of U. pertusa was higher under ET conditions than under ambient temperature conditions. In order to evaluate external carbonic anhydrase (eCA) activity, photosynthesis was measured at 70 μmol photons m−2 s−1 in the presence or absence of the eCA inhibitor acetazolamide (AZ), which inhibited photosynthetic rates in all treatments, indicating eCA activity. However, while AZ reduced U. pertusa photosynthesis in all treatments, this reduction was lower under ambient CO2 conditions (both present and warming) compared to EC conditions (both acidification and greenhouse). Moreover, Chlorophyll a and glucose contents in U. pertusa tissues declined under ET conditions (both warming and greenhouse) in conjunction with reduced GPmax and Rd. Overall, our results indicate that the interaction of EC and ET would offset each other’s impacts on photosynthesis and biochemical composition as related to carbon balance of U. pertusa.

키워드

acidification;CO2;greenhouse;photosynthesis;temperature;Ulva pertusa;warming

참고문헌

  1. Andria, J. R., Vergara, J. J. & Perez-Llorens, J. 1999. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur. J. Phycol. 34:497-504. https://doi.org/10.1080/09541449910001718851
  2. Atkin, O. K., Edwards, E. J. & Loveys, B. R. 2000. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol. 147:141-154. https://doi.org/10.1046/j.1469-8137.2000.00683.x
  3. Atkin, O. K. & Tjoelker, M. G. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8:343-351. https://doi.org/10.1016/S1360-1385(03)00136-5
  4. Choi, T. S. 2003. Ecophysiological characteristics of green macroalga Ulva pertusa L. from eelgrass habitats. Ph.D. dissertation, Chonnam National University, Gwangju, Korea, pp. 89-118.
  5. Björk, M., Haglund, K., Ramazanov, Z. & Pedersén, M. 1993. Inducible mechanisms for HCO3- utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J. Phycol. 29:166-173. https://doi.org/10.1111/j.0022-3646.1993.00166.x
  6. Brading, P., Warner, M. E., Davey, P., Smith, D. J., Achterberg, E. P. & Suggett, D. J. 2011. Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 56:927-938. https://doi.org/10.4319/lo.2011.56.3.0927
  7. Cheng, W., Sims, D. A., Luo, Y., Coleman, J. S. & Johnson, D. W. 2000. Photosynthesis, respiration and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations: an invariant NPP:GPP ratio. Glob. Chang. Biol. 6:931-941. https://doi.org/10.1046/j.1365-2486.2000.00367.x
  8. Connell, S. D. & Russell, B. D. 2010. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B 277:1409-1415. https://doi.org/10.1098/rspb.2009.2069
  9. Dale, B., Edwards, M. & Reid, P. C. 2006. Climate change and harmful algal blooms. In Granéli, E. & Turner, J. T. (Eds.) Ecology of Harmful Algae. Springer, Berlin, pp. 367-378.
  10. Davison, I. R. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27:2-8. https://doi.org/10.1111/j.0022-3646.1991.00002.x
  11. Davison, I. R., Greene, R. M. & Podolak, E. J. 1991. Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar. Biol. 110:449-454. https://doi.org/10.1007/BF01344363
  12. Falkowski, P. G. & Raven, J. A. 2007. Aquatic photosynthesis. 2nd ed. Princeton University Press, Princeton, NJ, pp. 306-310.
  13. de Casabianca, M. -L., Barthelemy, N., Serrano, O. & Sfriso, A. 2002. Growth rate of Ulva rigida in different Mediterranean eutrophicated sites. Bioresour. Technol. 82:27-31. https://doi.org/10.1016/S0960-8524(01)00155-9
  14. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169-192. https://doi.org/10.1146/annurev.marine.010908.163834
  15. Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J. -P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M. -D., Rochelle-Newall, E., Schneider, U., Terbrueggen, A. & Riebesell, U. 2005. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 50:493-507. https://doi.org/10.4319/lo.2005.50.2.0493
  16. Figueroa, F. L., Israel, A., Neori, A., Martínez, B., Malta, E. -J., Ang, P. Jr., Inken, S., Marquardt, R. & Korbee, N. 2009. Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chorophyta): responses to short-term stress. Aquat. Biol. 7:173-183. https://doi.org/10.3354/ab00187
  17. Floreto, E. A. T., Hirata, H., Ando, S. & Yamasaki, S. 1993. Effects of temperature, light intensity, salinity and source of nitrogen on the growth, total lipid and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 36:149-158.
  18. Fu, F. -X., Warner, M. E., Zhan, Y., Feng, Y. & Hutchins, D. A. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J. Phycol. 43:485-496. https://doi.org/10.1111/j.1529-8817.2007.00355.x
  19. Giannotti, A. L. & McGlathery, K. J. 2001. Consumption of Ulva lactuca (Chlorophyta) by the omnivorous mud snail Ilyanassa obsoleta (Say). J. Phycol. 37:209-215. https://doi.org/10.1046/j.1529-8817.2001.037002209.x
  20. Gao, K., Helbling, E. W., Hӓder, D. -P. & Hutchins, D. A. 2012. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar. Ecol. Prog. Ser. 470:167-189. https://doi.org/10.3354/meps10043
  21. García-Sánchez, M. J., Fernández, J. A. & Niell, X. 1994. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55-61.
  22. Gessner, F. 1970. Temperature: plants. In Kinne, O. (Ed.) Marine Ecology: A Comprehensive, Integrated Treatise on Life in Oceans and Coastal Waters. Vol. 1. Environmental Factors. Wiley Interscience, New York, pp. 363-406.
  23. Gordillo, F. J. L., Figueroa, F. L. & Niell, F. X. 2003. Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315-322. https://doi.org/10.1007/s00425-003-1087-3
  24. Gordillo, F. J. L., Niell, F. X. & Figueroa, F. L. 2001. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64-70. https://doi.org/10.1007/s004250000468
  25. Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A. & Tausnev, N. 2005. Earth’s energy imbalance: confirmation and implications. Science 308:1431-1435. https://doi.org/10.1126/science.1110252
  26. Innes, D. J. 1988. Genetic differentiation in the intertidal zone in populations of the alga Enteromorpha linza (Ulvales: Chlorophyta). Mar. Biol. 97:9-16. https://doi.org/10.1007/BF00391240
  27. Inskeep, W. P. & Bloom, P. R. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77:483-485. https://doi.org/10.1104/pp.77.2.483
  28. Kang, E. J., Kim, J. -H., Kim, K., Choi, H. -G. & Kim, K. Y. 2014. Re-evaluation of green tide-forming species in the Yellow Sea. Algae 29:267-277. https://doi.org/10.4490/algae.2014.29.4.267
  29. IPCC 2007. Summary for policymakers. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1-18.
  30. Israel, A. & Hophy, M. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Glob. Chang. Biol. 8:831-840. https://doi.org/10.1046/j.1365-2486.2002.00518.x
  31. Johnston, A. M., Maberly, S. C. & Raven, J. A. 1992. The acquisition of inorganic carbon for four red macroalgae. Oecologia 92:317-326. https://doi.org/10.1007/BF00317457
  32. Kang, E. J., Kim, J. -H., Kim, K. & Kim, K. Y. 2016. Adaptations of a green tide forming Ulva linza (Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea. Phycologia 55:210-218. https://doi.org/10.2216/15-67.1
  33. Kim, J. -H., Kang, E. J., Park, M. G., Lee, B. -G. & Kim, K. Y. 2011. Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in the Yellow Sea. J. Appl. Phycol. 23:421-432. https://doi.org/10.1007/s10811-010-9590-y
  34. Kim, J. -H., Kim, K. Y., Kang, E. J., Lee, K., Kim, J. -M., Park, K. -T., Shin, K., Hyun, B. & Jeong, H. J. 2013. Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences 10:7525-7535. https://doi.org/10.5194/bg-10-7525-2013
  35. Kim, J. -M., Shin, K., Lee, K. & Park, B. -K. 2008. In situ ecosystem-based carbon dioxide perturbation experiments: design and performance evaluation of a mesocosm facility. Limnol. Oceanogr. Methods 6:208-217. https://doi.org/10.4319/lom.2008.6.208
  36. Kübler, J. E. & Davison, I. R. 1995. Thermal acclimation of light-use characteristics of Chondrus crispus (Rhodophyta). Eur. J. Phycol. 30:189-195. https://doi.org/10.1080/09670269500650971
  37. Kim, K. Y., Choi, T. S., Kim, J. H., Han, T., Shin, H. W. & Garbary, D. J. 2004. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43:483-492. https://doi.org/10.2216/i0031-8884-43-4-483.1
  38. Kim, K. Y. & Lee, I. K. 1996. The germling growth of Enteromorpha intestinalis (Chlorophyta) in laboratory culture under different combinations of irradiance and salinity and temperature and salinity. Phycologia 35:327-331. https://doi.org/10.2216/i0031-8884-35-4-327.1
  39. Koch, M., Bowes, G., Ross, C. & Zhang, X. -H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Chang. Biol. 19:103-132. https://doi.org/10.1111/j.1365-2486.2012.02791.x
  40. Lewis, E. & Wallace, D. W. R. 1998. CO2SYS-Program developed for the CO2 system calculations. Report ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge, TN, 21 pp.
  41. Lüning, K. 1990. Seaweeds: their environment, biogeography and ecophysiology. Wiley, New York, 544 pp.
  42. Menzel, D. W. & Corwin, N. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10:280-282. https://doi.org/10.4319/lo.1965.10.2.0280
  43. Mercado, J. M., Figueroa, F. L., Niell, F. X. & Axelsson, L. 1997. A new method for estimating external carbonic anhydrase activity in macroalgae. J. Phycol. 33:999-1006. https://doi.org/10.1111/j.0022-3646.1997.00999.x
  44. Murase, N., Maegawa, M., Matsui, T., Ohgai, M., Katayama, N., Saitoh, M. & Yokohama, Y. 1993. Growth and photosynthesis termperature characteristics of the sterile Ulva pertusa. Nippon Suisan Gakkaish 60:625-630.
  45. Raven, J. A. 1997. Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27:85-209. https://doi.org/10.1016/S0065-2296(08)60281-5
  46. Olabarria, C., Arenas, F., Viejo, R. M., Gestoso, I., Vaz-Pinto, F., Incera, M., Rubal, M., Cacabelos, E., Veiga, P. & Sobrino, C. 2013. Response of macroalgal assemblages from rock-pools to climate change: effects of persistent increase in temperature and CO2. Oikos 122:1065-1079. https://doi.org/10.1111/j.1600-0706.2012.20825.x
  47. Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblage of marine phytoplankton. J. Mar. Res. 38:687-701.
  48. Ralph, P. J. & Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82:222-237. https://doi.org/10.1016/j.aquabot.2005.02.006
  49. Rodolfo-Metalpa, R., Houlbrèque, F., Tambutté, É., Boisson, F., Baggini, C., Patti, F. P., Jeffree, R., Fine, M., Foggo, A., Gattuso, J. -P. & Hall-Spencer, J. M. 2011. Coral and mollusk resistance to ocean acidification adversely affected by warming. Nat. Clim. Chang. 1:308-312. https://doi.org/10.1038/nclimate1200
  50. Schaum, E., Rost, B., Millar, A. J. & Collins, S. 2013. Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nat. Clim. Chang. 3:298-302. https://doi.org/10.1038/nclimate1774
  51. Taylor, R., Fletcher, R. L. & Raven, J. A. 2001. Preliminary studies on the growth of selected ‘green-tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot. Mar. 44:327-336.
  52. Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D. & Foreman, K. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42:1105-1118. https://doi.org/10.4319/lo.1997.42.5_part_2.1105
  53. Xu, J. & Gao, K. 2012. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160:1762-1769. https://doi.org/10.1104/pp.112.206961
  54. Vona, V., Rigano, V. D. M., Lobosco, O., Carfagna, S., Esposito, S. & Rigano, C. 2004. Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol. 163:325-331. https://doi.org/10.1111/j.1469-8137.2004.01098.x
  55. Webber, A. N., Nie, G. -Y. & Long, S. P. 1994. Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth. Res. 39:413-425. https://doi.org/10.1007/BF00014595
  56. Wood, T. M. & Bhat, K. M. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160:87-112. https://doi.org/10.1016/0076-6879(88)60109-1
  57. Young, A. J., Collins, J. C. & Russell, G. 1987. Ecotypic variation in the osmotic responses of Enteromorpha intestinalis (L.) Link. J. Exp. Bot. 38:1309-1324. https://doi.org/10.1093/jxb/38.8.1309
  58. Zimmerman, R. C., Kohr, D. G., Steller, D. L. & Alberte, R. S. 1997. Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol. 115:599-607. https://doi.org/10.1104/pp.115.2.599
  59. Zou, D. & Gao, K. 2013. Thermal acclimation of respiration and photosynthesis in the marine macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta). J. Phycol. 49:61-68. https://doi.org/10.1111/jpy.12009
  60. Zou, D. & Gao, K. 2014. The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobata (Chlorophyta). Phycologia 53:86-94. https://doi.org/10.2216/13-189.1
  61. Zou, D., Gao, K. & Luo, H. 2011. Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J. Phycol. 47:87-97. https://doi.org/10.1111/j.1529-8817.2010.00929.x

피인용 문헌

  1. Changes in morphological plasticity of Ulva prolifera under different environmental conditions: A laboratory experiment vol.59, 2016, https://doi.org/10.4490/algae.2016.31.3.9
  2. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study vol.31, pp.3, 2016, https://doi.org/10.4490/algae.2016.31.3.9