DOI QR코드

DOI QR Code

Dual Loop Optoelectronic Oscillator with Acousto-Optic Delay Line

  • Kim, Tae Hyun ;
  • Lee, Sangkyung ;
  • Lee, Chang Hwa ;
  • Yim, Sin Hyuk
  • Received : 2015.11.17
  • Accepted : 2016.03.23
  • Published : 2016.04.25

Abstract

A dual loop optoelectronic oscillator (OEO) based on an acousto-optic modulator (AOM) for single mode operation with an acousto-optic delay line is demonstrated in this paper. When the OEO operates, the free spectral range is a function of the total loop length of the OEO, which is mainly dependent on the propagation time of the acoustic wave in the AOM. Due to the huge difference in the magnitude between the speed of light and the acoustic velocity in the AOM, the effective loop length converted to light-propagation length of the OEO increases to 3.8 km. With 150 MHz oscillation frequency, phase noise of -118 dBc/Hz at 10 kHz frequency offset, and -140 dBc/Hz at 200 kHz frequency offset, is achieved.

Keywords

Optoelectronic oscillator;Acousto-optic delay line

References

  1. T. Zhang, J. Zhu, T. Guo, J. Wang, and S. Ye, “Improving accuracy of distance measurements based on an optoelectronic oscillator by measuring variation of fiber delay,” Appl. Opt. 52, 3495-3499 (2013). https://doi.org/10.1364/AO.52.003495
  2. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725-1735 (1996). https://doi.org/10.1364/JOSAB.13.001725
  3. A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40, 6-8 (1982). https://doi.org/10.1063/1.92929
  4. D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, and L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53, 2469-2484 (2006). https://doi.org/10.1080/09500340600982900
  5. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141-1149 (1996). https://doi.org/10.1109/3.517013
  6. L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22, 857-859 (2010). https://doi.org/10.1109/LPT.2010.2046028
  7. F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38, 2611-2613 (2013). https://doi.org/10.1364/OL.38.002611
  8. C. H. Lee and S. H. Yim, “Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device,” Opt. Express 22, 13634-13640 (2014). https://doi.org/10.1364/OE.22.013634
  9. D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56, 449-456 (2008). https://doi.org/10.1109/TMTT.2007.914640
  10. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36, 79-84 (2000). https://doi.org/10.1109/3.817641
  11. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, and P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35, 799-801 (2010). https://doi.org/10.1364/OL.35.000799
  12. J. M. Kim and D. Cho, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system,” Opt. Express 18, 14905-14912 (2010). https://doi.org/10.1364/OE.18.014905
  13. A. B. Matsko, L. Maleki, A. A. Savchenkow, and V. S. Illchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt. 50, 2523-2542 (2003). https://doi.org/10.1080/09500340308233582
  14. K. Volyanskiy, P. Sazenstein, H. Tavernier, M. Pogurmirskiy, Y. K. Chembo, and L. Larger, “Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation,” Opt. Express 18, 22358-22363 (2010). https://doi.org/10.1364/OE.18.022358
  15. P. H. Merrer, K. Saleh, O. Llopis, S. Berneschi, F. Cosi, and G. N. Conti, “Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators,” Appl. Opt. 51, 4742-4748 (2012). https://doi.org/10.1364/AO.51.004742
  16. Brimrose Corporation of America, Baltimore, USA.
  17. S. Tallur and S. A. Bhave, “Partial gap transduced MEMS optoacoustic oscillator beyond gigahertz,” J. Microelectromech. Syst. 24, 422-430 (2015). https://doi.org/10.1109/JMEMS.2014.2332495

Cited by

  1. Simulation Analysis and Optimization of Phase Locked Photoelectric Oscillator vol.08, pp.03, 2018, https://doi.org/10.12677/OE.2018.83013

Acknowledgement

Grant : 기초연구

Supported by : 국방과학연구소