DOI QR코드

DOI QR Code

Transformation Optics Methodology for Changing the Appearance of an Object

Li, Yanxiu;Kong, Fanmin;Li, Kang

  • Received : 2015.10.26
  • Accepted : 2016.02.24
  • Published : 2016.04.25

Abstract

Transformation optics methodology provides a new pathway for designing novel devices. It is based on changing a material’s permittivity and permeability. A design for changing the appearance of an object by transformation optics methodology is proposed here. Through a certain transformation, the relations of the metric spaces and the calculation of the material parameters are derived, and the aim of changing the apparent size of an object can be realized. Full wave simulations are performed to validate the proposed device’s performance. It is possible to think that the methodology will improve the flexibility of designing interesting applications in microwave and optical regimes.

Keywords

Transformation optics;Coordination transformation;Anisotropic media;Metamaterial

References

  1. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006) https://doi.org/10.1088/1367-2630/8/10/247
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006). https://doi.org/10.1126/science.1126493
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). https://doi.org/10.1126/science.1125907
  4. R. A. Crudo and J. G. O'Brien, "Metric approach to transfor­mation optics," Phys. Rev. A 80, 033824 (2009). https://doi.org/10.1103/PhysRevA.80.033824
  5. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69-152 (2009). https://doi.org/10.1016/S0079-6638(08)00202-3
  6. N. Kundtz and D. R. Smith, “Extreme-angle broadband meta­material lens,” Nat. Mater. 9, 129-132 (2010). https://doi.org/10.1038/nmat2610
  7. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). https://doi.org/10.1126/science.1133628
  8. F. Zolla, S. Guenneau, A. Nicolet, and J. Pendry, “Electro­magnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32, 1069-1071 (2007). https://doi.org/10.1364/OL.32.001069
  9. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invarian coordinate transfor­mations of Maxwell’s equations,” Photon. Nano. Fund. Appl. 6, 87-95 (2008). https://doi.org/10.1016/j.photonics.2007.07.013
  10. D. H. Kwon and D. H. Werner, “Transformation optics designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008). https://doi.org/10.1088/1367-2630/10/11/115023
  11. D. Roberts, N. Kundtz, and D. Smith, “Optical lens com­pression via transformation optics,” Opt. Express 17, 16535-­16542 (2009). https://doi.org/10.1364/OE.17.016535
  12. M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008). https://doi.org/10.1103/PhysRevB.77.035122
  13. J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B. I. Wu, L. Ran, and J. A. Kong, “Application of coordinate transformation in bend waveguide,” J. Appl. Phys. 104, 014502 (2008). https://doi.org/10.1063/1.2949272
  14. A. Nicolet, F. Zolla, and S. Guenneau, “A finite element modelling for twisted electromagnetic waveguides,” Eur. Phys. J. Appl. Phys. 289, 153-157 (2004).
  15. J. Allen, N. Kundtz, D. A. Roberts, S. A. Cummer, and D. R. Smith, “Electromagnetic source transformations using superellipse equations,” Appl. Phys. Lett. 94, 194101 (2009). https://doi.org/10.1063/1.3130182
  16. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). https://doi.org/10.1103/PhysRevLett.100.063903
  17. M. Rahm, D. Roberts, J. Pendry, and D. Smith, “Transfor­mation-optics design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555-11567 (2008). https://doi.org/10.1364/OE.16.011555
  18. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology,” Opt. Express 18, 767-772 (2010). https://doi.org/10.1364/OE.18.000767
  19. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experi­mental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84, 165111 (2011). https://doi.org/10.1103/PhysRevB.84.165111
  20. W. Lu, Z. Lin, H. Chen, and C. Chan, “Transformation media based super focusing antenna,” J. Phys. D 42, 212002 (2009). https://doi.org/10.1088/0022-3727/42/21/212002
  21. Y. Luo, J. Zhang, L. X. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic source,” PIERS Online 4, 795-800 (2008). https://doi.org/10.2529/PIERS071229161355
  22. B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94, 244102 (2009). https://doi.org/10.1063/1.3158614
  23. P. H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83, 155108 (2011). https://doi.org/10.1103/PhysRevB.83.155108
  24. P. H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Coordinate transformation based ultra-directive emission,” Electron. Lett. 47, 580-582 (2011). https://doi.org/10.1049/el.2011.0463
  25. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Transfor­mation media producing quasi-perfect isotripic emission,” Opt. Express 19, 20551-20556 (2011). https://doi.org/10.1364/OE.19.020551
  26. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Reducing physical appearance of electromagnetic sources,” Opt. Express 21, 5053-5062 (2013). https://doi.org/10.1364/OE.21.005053