Transformation Optics Methodology for Changing the Appearance of an Object

Li, Yanxiu;Kong, Fanmin;Li, Kang

  • Received : 2015.10.26
  • Accepted : 2016.02.24
  • Published : 2016.04.25


Transformation optics methodology provides a new pathway for designing novel devices. It is based on changing a material’s permittivity and permeability. A design for changing the appearance of an object by transformation optics methodology is proposed here. Through a certain transformation, the relations of the metric spaces and the calculation of the material parameters are derived, and the aim of changing the apparent size of an object can be realized. Full wave simulations are performed to validate the proposed device’s performance. It is possible to think that the methodology will improve the flexibility of designing interesting applications in microwave and optical regimes.


Transformation optics;Coordination transformation;Anisotropic media;Metamaterial


  1. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006)
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
  4. R. A. Crudo and J. G. O'Brien, "Metric approach to transfor­mation optics," Phys. Rev. A 80, 033824 (2009).
  5. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69-152 (2009).
  6. N. Kundtz and D. R. Smith, “Extreme-angle broadband meta­material lens,” Nat. Mater. 9, 129-132 (2010).
  7. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
  8. F. Zolla, S. Guenneau, A. Nicolet, and J. Pendry, “Electro­magnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32, 1069-1071 (2007).
  9. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invarian coordinate transfor­mations of Maxwell’s equations,” Photon. Nano. Fund. Appl. 6, 87-95 (2008).
  10. D. H. Kwon and D. H. Werner, “Transformation optics designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008).
  11. D. Roberts, N. Kundtz, and D. Smith, “Optical lens com­pression via transformation optics,” Opt. Express 17, 16535-­16542 (2009).
  12. M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008).
  13. J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B. I. Wu, L. Ran, and J. A. Kong, “Application of coordinate transformation in bend waveguide,” J. Appl. Phys. 104, 014502 (2008).
  14. A. Nicolet, F. Zolla, and S. Guenneau, “A finite element modelling for twisted electromagnetic waveguides,” Eur. Phys. J. Appl. Phys. 289, 153-157 (2004).
  15. J. Allen, N. Kundtz, D. A. Roberts, S. A. Cummer, and D. R. Smith, “Electromagnetic source transformations using superellipse equations,” Appl. Phys. Lett. 94, 194101 (2009).
  16. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
  17. M. Rahm, D. Roberts, J. Pendry, and D. Smith, “Transfor­mation-optics design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555-11567 (2008).
  18. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology,” Opt. Express 18, 767-772 (2010).
  19. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experi­mental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84, 165111 (2011).
  20. W. Lu, Z. Lin, H. Chen, and C. Chan, “Transformation media based super focusing antenna,” J. Phys. D 42, 212002 (2009).
  21. Y. Luo, J. Zhang, L. X. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic source,” PIERS Online 4, 795-800 (2008).
  22. B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94, 244102 (2009).
  23. P. H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83, 155108 (2011).
  24. P. H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Coordinate transformation based ultra-directive emission,” Electron. Lett. 47, 580-582 (2011).
  25. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Transfor­mation media producing quasi-perfect isotripic emission,” Opt. Express 19, 20551-20556 (2011).
  26. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Reducing physical appearance of electromagnetic sources,” Opt. Express 21, 5053-5062 (2013).