DOI QR코드

DOI QR Code

Photoluminescence Quenching and Recovery of the CdSe Nanocrystals by Metal Ions

금속이온에 의한 CdSe 나노결정의 형광 소광 및 회복 특성

  • Received : 2015.11.19
  • Accepted : 2016.01.11
  • Published : 2016.04.20

Abstract

Copper ion induced photoluminescence (PL) quenching dynamics and recovery of the PL by zinc ions were investigated for CdSe based nanocrystals. When copper ions were added, CdSe quantum dots showed fast and dramatically PL quenching whereas PL of CdSe nanorod gradually decreased. In the presence of zinc ions, the PL of CdSe/CdS (core/shell) nanocrystals that have quenched by copper ions was efficiently recovered. It showed that the PL intensity of nanocrystals increased by 50% in a solution containing 1 μM zinc ions. The PL intensity was increasing with increasing zinc ions, and could be described by Langmuir binding isotherm model. We showcase that the CdSe based nanocrystals can be used as fluorescence turn-on sensor.

Keywords

Nanocrystal;Photoluminescence;Metal ion;Sensor;Coordinate

References

  1. Lippard, S. J.; Berg, J. M. In Principles of Bioinorganic Chemistry; University Science Books; Mill Valley, CA 1994; p. 10, 14, 78.
  2. Maret, W.; Jacob, C.; Vallee, B. L.; Fischer, E. H. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1936. https://doi.org/10.1073/pnas.96.5.1936
  3. Falchuk, K. H. Mol. Cell. Biochem. 1998, 188, 41. https://doi.org/10.1023/A:1006808119862
  4. Binet, M. R. B.; Ma, R.; McLeod, C. W.; Poole, R. K. Anal. Biochem. 2003, 318, 30. https://doi.org/10.1016/S0003-2697(03)00190-8
  5. Kaya, S.; Kececi, T.; Haliloglu, S. Res. Veter. Sci. 2001, 71, 135. https://doi.org/10.1053/rvsc.2001.0500
  6. Rostan, E. F.; DeBuys, H. V.; Madey, D. L.; Pinnell, S. R. Int. J. Dermatol. 2002, 41, 606. https://doi.org/10.1046/j.1365-4362.2002.01567.x
  7. Tewari, P. K.; Singh, A. K. Analyst 2000, 125, 2350. https://doi.org/10.1039/b006788l
  8. Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780. https://doi.org/10.1021/cr068046j
  9. Gupta, V. K.; Singh, A. K.; Mergu, N. Electrochim. Acta 2014, 117, 405. https://doi.org/10.1016/j.electacta.2013.11.143
  10. Gupta, V. K.; Singh, A. K.; Kumawat, L. K. Sens. Actuator B 2014, 195, 98. https://doi.org/10.1016/j.snb.2013.12.092
  11. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat Mater. 2005, 4, 435. https://doi.org/10.1038/nmat1390
  12. Coe, S.; Woo, W.-K.; Bawendi, M. G.; Bulovic, V. Nature 2002, 420, 800. https://doi.org/10.1038/nature01217
  13. Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.-J.; Bawendi, M. G. Science 2000, 290, 314. https://doi.org/10.1126/science.290.5490.314
  14. Huynh, W. U.; Dittmer. J. J.; Alivisatos. A. P. Science 2002, 295, 2425. https://doi.org/10.1126/science.1069156
  15. Chan, W. C.; Nie, S. Science 1998, 281, 2016. https://doi.org/10.1126/science.281.5385.2016
  16. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. https://doi.org/10.1126/science.1104274
  17. Jin, H.; Won, N.; Ahn, B.; Kwag, J.; Heo, K.; Oh, J-W.; Sun, Y.; Cho, S. G.; Lee, S.-W.; Kim, S. Chem. Commun. 2013, 49, 6045. https://doi.org/10.1039/c3cc42032a
  18. Chen, Y. F.; Rosenzweig, Z. Anal. Chem. 2002, 74, 5132. https://doi.org/10.1021/ac0258251
  19. Isarov, A. V.; Chrysochoos, J. Langmuir 1997, 13, 3142. https://doi.org/10.1021/la960985r
  20. Li, J.; Bao, D.; Hong, X.; Li, D.; Li, J.; Bai, Y.; Li, T. Colloids. Surf. A 2005, 257, 267.
  21. Wang, G.; Dong, Y.; Li, Z. Nanotechnology 2011, 22, 085503. https://doi.org/10.1088/0957-4484/22/8/085503
  22. Xie, R.; Kolb, U.; Li, J.; Basche, T.; Mews, A. J. Am. Chem. Soc. 2005, 127, 7480. https://doi.org/10.1021/ja042939g
  23. Bear, J. C.; Hollingsworth, N.; McNaughter, P. D.; Mayes, A. G.; Ward, M. B.; Nann, T.; Hogarth, G.; Parkin, I. P. Angew. Chem. Int. Ed. 2014, 53, 1598. https://doi.org/10.1002/anie.201308778
  24. Peng, Z. A.; Peng, X. J. Am .Chem. Soc. 2001, 123, 1389. https://doi.org/10.1021/ja0027766
  25. Shiang, J. J.; Kadavanich, A. V.; Grubbs, R. K.; Aliviastos, A.P. J. Phys. Chem. 1995, 99, 17417. https://doi.org/10.1021/j100048a017
  26. Sadtler, B.; Demchenko, D. O.; Zheng, H.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L.-W.; Alivisatos, A. P. J. Am. Chem. Soc. 2009, 131, 5285. https://doi.org/10.1021/ja809854q
  27. Li, H.; Brescia, R.; Krahne, R.; Bertoni, G.; Alcocer, M. J. P.; D’Andrea, C.; Scotognella, F.; Tassone. F.; Zanella, M.; Giorgi, M. D.; Manna, L. ACS Nano, 2012, 6, 1637. https://doi.org/10.1021/nn204601n