DOI QR코드

DOI QR Code

Effects of Oxygen Surface Treatment on the Properties of TiO2 Thin Film for Self-cleaning Application

자기세정을 위한 스퍼터링 TiO2 박막의 산소 표면처리에 따른 특성

Kim, Nam-Hoon;Park, Yong Seob
김남훈;박용섭

  • Received : 2016.04.19
  • Accepted : 2016.04.24
  • Published : 2016.05.01

Abstract

Titanium oxide ($TiO_2$) thin films were fabricated by unbalanced magnetron (UBM) sputtering. The fabricated $TiO_2$ films were treated by oxygen plasma under various RF powers. We investigated the characteristics of oxygen plasma treatment on the surface, structural, and physical properties of $TiO_2$ films prepared at various plasma treatment RF powers. UBM sputtered $TiO_2$ films exhibited higher contact angle value, smooth surface, and amorphous structure. However, the rms surface roughness $TiO_2$ films were rough, and the contact angle value was decreased with the increase of the plasma treatment RF power Also, the hardness value of $TiO_2$ film as physical properties was slightly increased with the increase of the plasma treatment RF power. In the results, the performance of $TiO_2$ films for self cleaning critically depended on the with the plasma treatment RF power.

Keywords

$TiO_2$;Unbalanced magnetron sputtering;Contact angle;Rms surface roughness

References

  1. W. R. Hansen and K. Autumn, Proc. Natl. Acad. Sci. USA, 102, 385 (2005). [DOI: http://dx.doi.org/10.1073/pnas.0408304102] https://doi.org/10.1073/pnas.0408304102
  2. M. Ma and R. M. Hill, Curr. Opin. Colloid Interface Sci., 11, 193 (2006). [DOI: http://dx.doi.org/10.1016/j.cocis.2006.06.002] https://doi.org/10.1016/j.cocis.2006.06.002
  3. J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, J. Micromech. Microeng., 17, S147 (2007). [DOI: http://dx.doi.org/10.1088/0960-1317/17/7/S12] https://doi.org/10.1088/0960-1317/17/7/S12
  4. J. C. Damasceno, S. S. Camargo Jr, F. L. Freire Jr, and R. Carius, Surf. Coat. Technol., 133-134, 247 (2000). [DOI: http://dx.doi.org/10.1016/S0257-8972(00)00932-4] https://doi.org/10.1016/S0257-8972(00)00932-4
  5. A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, a. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, Diam. Relat. Mater., 10, 1952 (2001). [DOI: http://dx.doi.org/10.1016/S0925-9635(01)00385-5]
  6. D. Sheeja, B. K. Tay, S. P. Lau, and X. Shi, Wear, 249, 433 (2001). [DOI: http://dx.doi.org/10.1016/S0043-1648(01)00541-5] https://doi.org/10.1016/S0043-1648(01)00541-5
  7. A. A. Solov'ev, N. S. Sochugov, K. V. Oskomov, and S. V. Rabotkin, Plasma Physics Reports, 35, 399 (2009). [DOI: http://dx.doi.org/10.1134/S1063780X09050055] https://doi.org/10.1134/S1063780X09050055
  8. N. Yasumaru, K. Miyazaki, and J. Kiuchi, Appl. Phys. A, 76, 983 (2003). [DOI: http://dx.doi.org/10.1007/s00339-002-1979-2] https://doi.org/10.1007/s00339-002-1979-2
  9. M. Schlatter, Diam. Relat. Mater., 11, 1781 (2002). [DOI: http://dx.doi.org/10.1016/S0925-9635(02)00166-8]