DOI QR코드

DOI QR Code

Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries

리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성

Kong, Ming Zhe;Nguyen, Van Hiep;Gu, Hal-Bon
공명철;;구할본

  • Received : 2016.03.12
  • Accepted : 2016.04.07
  • Published : 2016.05.01

Abstract

In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.

Keywords

Capacity;Energy density;$LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%);Accumulated capacity

References

  1. G. H. Waller, J. Power Sources, 306, 162 (2016). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2015.11.114] https://doi.org/10.1016/j.jpowsour.2015.11.114
  2. T.Y.S.P. Putra, M. Yonemura, S. Torii, T. Ishigaki, and T. Kamiyama, Solid State Ionics, 262, 83 (2014). [DOI: http://dx.doi.org/10.1016/j.ssi.2013.10.049] https://doi.org/10.1016/j.ssi.2013.10.049
  3. Y. Nishi, J. Power Sources, 100, 101 (2001). [DOI: http://dx.doi.org/10.1016/S0378-7753(01)00887-4] https://doi.org/10.1016/S0378-7753(01)00887-4
  4. M. M. Thackeray, Solid State Chemistry, 25, 1 (1997). [DOI: http://dx.doi.org/10.1016/S0079-6786(97)81003-5] https://doi.org/10.1016/S0079-6786(97)81003-5
  5. K. Du, G. R. Hu, Z. D. Peng, and L. Qi, Electrochemica Acta, 55, 1733 (2010). [DOI: http://dx.doi.org/10.1016/j.electacta.2009.10.058] https://doi.org/10.1016/j.electacta.2009.10.058
  6. Y. J. Liu, X. H. Li, H. J. Guo, Z. X. Wang, Q. Y. Hu, W. J. Peng, and Y. Yang, J. Power Sources, 189, 721 (2009). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2008.08.044] https://doi.org/10.1016/j.jpowsour.2008.08.044
  7. H. S. Kim, M. Z. Kong, K. T. Kim, I. J. Kim, and H. B. Gu, J. Power Sources, 171, 917 (2007). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.06.028] https://doi.org/10.1016/j.jpowsour.2007.06.028
  8. N. Yabuuchi and T. Ohzuku, J. Power Sources, 119, 171 (2003). [DOI: http://dx.doi.org/10.1016/S0378-7753(03)00173-3]
  9. H. J. Guo, R. F. Liang, X. H. Li, X. M. Zhang, Z. X. Wang, W. J. Peng, and Z. Wang, Trans. Nonferrous Met. Soc. China, 17, 1307 (2007). [DOI: http://dx.doi.org/10.1016/S1003-6326(07)60267-2] https://doi.org/10.1016/S1003-6326(07)60267-2
  10. M. Z. Kong, H. S. Kim, and K. T. Kim, Proc. of KIEEME Autumn Conference, 19, 214 (2006).
  11. H. S. Kim, S. I. Kim, and W. S. Kim, Electrochemica Acta, 52, 1457 (2006). [DOI: http://dx.doi.org/10.1016/j.electacta.2006.02.045] https://doi.org/10.1016/j.electacta.2006.02.045

Acknowledgement

Grant : BK21플러스

Supported by : 전남대학교