Development of Powder Injection Molding Process for a Piezoelectric PAN-PZT Ceramics

  • Han, Jun Sae ;
  • Park, Dong Yong ;
  • Lin, Dongguo ;
  • Chung, Kwang Hyun ;
  • Bollina, Ravi ;
  • Park, Seong Jin
  • Received : 2016.02.04
  • Accepted : 2016.03.28
  • Published : 2016.04.28


A powder injection molding process is developed and optimized for piezoelectric PAN-PZT ceramics. Torque rheometer experiments are conducted to determine the optimal solids loading, and the rheological property of the feedstock is evaluated using a capillary rheometer. Appropriate debinding conditions are chosen using a thermal gravity analyzer, and the debound specimens are sintered using sintering conditions determined in a preliminary investigation. Piezoelectric performance measures, including the piezoelectric charge constant and dielectric constant, are measured to verify the developed process. The average values of the measured piezoelectric charge constant and dielectric constant are 455 pC/N and 1904, respectively. Powder injection molded piezoelectric ceramics produced by the optimized process show adequate piezoelectric performance compared to press-sintered piezoelectric ceramics.


Powder injection molding;PAN-PZT;Piezoelectricity;Microstructure;Piezoelectric ceramics


  1. V. Koval, C. Alemany, J. Briancin, H. Brunckova and K. Saksl: J. Eur. Ceram. Soc., 23 (2003) 1157.
  2. F. Gao, C.-J. Wang, X.-C. Liu and C.-S. Tian: Ceram. Int., 33 (2007) 1019.
  3. X. Chao, D. Ma, R. Gu and Z. Yang: J. Alloys. Compd., 491 (2010) 698.
  4. S.-J. Kim, J.-Y. Ha, J.-W. Choi, C.-Y. Kang, H.-J. Kim, D.-Y. Jeong, M.-Y. Sung and S.-J. Yoon: J. Appl. Phys., 46 (2007) 691.
  5. G. Shibo, Q. Xuanhui, H. Xinbo, Z. Ting and D. Bohua: J. Mater. Process. Technol., 173 (2006) 310.
  6. J. Cheng, L. Wan, Y. Cai, J. Zhu, P. Song, J. Dong: J. Mater. Process. Technol., 210 (2010) 137.
  7. G. Aggarwal, I. Smid, S. J. Park and R. M. German: Int. J. Refract. Met. Hard Mater., 25 (2007) 226.
  8. Z. Y. Liu, N. H. Loh, S. B. Tor, K. A. Khor, Y. Murakoshi, R. Maeda and T. Shimizu: J. Mater. Process. Technol., 127 (2002) 165.
  9. J. H. Kim, S.-Y. Choi, J.-H. Jeon, G. Lim and S. S. Chang: Microsyst. Technol., 19 (2013) 343.
  10. I. Stanimirovic and Z. Stanimirovic: Proc. 27th International Conference On Microelectronics, (2010) 231.
  11. B. S. Zlatkov, E. Griesmayer, H. Loibl, O. S. Aleksi , H. Danninger, C. Gierl and L. S. Luki : Sci. Sinter., 40 (2008) 185
  12. Y. W. Gu, T. Li, Q. F. Li, S. F. Pook and C. W. Goh: SIM Tech. Technical Reports., 9 (2008) 189.
  13. J. S. Han, K. H. Chung, R. Bollina, K. Kim, C. Joh, H. S. Seo and S. J. Park: Ceram. Int., 41 (2015) 9328.
  14. R. M. German and A. Bose: Injection Molding of Metals and Ceramics, Metal Power Industries Federation, New Jersey (1997).
  15. F. M. Barreiros, M. T. Vieira and J. M. Castanho: Met. Powder Rep., 64 (2009) 18.
  16. C. W. Macosko: Rheology principles, measurements, and applications, VCH PUB. Co., New York (1994).
  17. C. H. Wang, S. J. Chang and P. C. Chang: Mater. Sci. Eng. B, 111 (2004) 124.
  18. T. M. Kamel and G. D. With: J. Eur. Ceram. Soc., 28 (2008) 851.

Cited by

  1. Investigation of stainless steel 316L/zirconia joint part fabricated by powder injection molding pp.1546542X, 2018,
  2. Experimental analysis for fabrication of high-aspect-ratio piezoelectric ceramic structure by micro-powder injection molding process vol.5, pp.4, 2018,


Supported by : National Research Foundation of Korea (NRF)