Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material

  • Rimal, Pradip ;
  • Yoon, Sang-Min ;
  • Kim, Eun-Bin ;
  • Lee, Chul-Hee ;
  • Hong, Soon-Jik
  • Received : 2016.04.04
  • Accepted : 2016.04.20
  • Published : 2016.04.28


The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type $Bi_2Te_{2.7}Se_{0.3}$ material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at $360^{\circ}C$. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.


n-type $Bi_2Te_3$;Gas atomization;Hydrogen reduction;Thermoelectric properties


  1. D. M. Rowe: CRC Handbook of Thermoelectrics, CRC Press LLC, Boca Raton, 1995.
  2. G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105.
  3. Y. Lan, A. J. Minnich, G. Chen and Z. Ren: Adv. Funct. Mater., 20 (2010) 357.
  4. L. D. Zhao, B.-P. Zhang, W. S. Liu, H. L. Zhang and J.-F. Li: J. Alloys Compd., 467 (2009) 91.
  5. K. T. Kim, I. Son and G. H. Ha: J. Korean Powder Metall. Inst., 20 (2013) 345.
  6. C. J. Vineis, A. Shakouri, A. Majumdar and M. G. Kanatzidis: Adv. Mater., 22 (2010) 3970.
  7. A. Hruban, A. Materna, W. Dalecki, G. Strzelecka, M. Piersa, E. J.-Wegner, R. Diduszko, M. Romaniec and W. Orlowski: Acta Phys. Pol. A, 120 (2011) 950.
  8. J. Jiang, L. Chen, S. Bai, Q. Yao and Q. Wang: Mater. Sci. Eng. B, 117 (2005) 334.
  9. C. H. Lim, D. C. Cho, Y. S. Lee and C. H. Lee: J. Korean Phys. Soc., 46 (2005) 995.
  10. H. P. Ha, Y. J. Oh, D. B. Hyun and E. P. Yoon: Int. J. Soc. Mater. Eng. Resour., 10 (2002) 130.
  11. C.-H. Kuo, C.-S. Hwang, M.-S. Jeng, W.-S. Su, Y.-W. Chou and J.-R. Ku: J. Alloys Compd., 496 (2010) 687.
  12. H.-S. Kim and S.-J. Hong: J. Alloys Compd., 586 (2014) S428.
  13. S.-J. Hong and B.-S. Chun: Mater. Res. Bull., 38 (2003) 599.
  14. L. D. Zhao, B.-P. Zhang, J.-F. Li, M. Zhou and W. S. Liu: Physica B Condens. Matter, 400 (2007) 11.
  15. D. H. Kim, C. Kim, S. H. Heo and H. Kim: Acta Mater., 59 (2011) 405.
  16. S.-J. Hong, Y.-S. Lee, J.-W. Byeon and B.-S. Chun: J. Alloys Compd., 414 (2006) 146.
  17. F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang and L. Chen: J. Alloys Compd., 509 (2011) 4769.
  18. C.-H. Lee, M. F. Kilicaslan, B. Madavali and S.-J. Hong: Res. Chem. Intermed., 40 (2014) 2543.
  19. S.-J. Hong and B.-S. Chun: Mater. Sci. Eng. A, 356 (2003) 345.

Cited by

  1. Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys vol.24, pp.2, 2017,
  2. The Preparation and Growth Mechanism of the Recovered Bi2Te3 Particles with Respect to Surfactants vol.24, pp.2, 2017,


Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)