DOI QR코드

DOI QR Code

Research Trend of Additive Manufacturing Technology - A=B+C+D+E, add Innovative Concept to Current Additive Manufacturing Technology: Four Conceptual Factors for Building Additive Manufacturing Technology -

  • Choi, Hanshin ;
  • Byun, Jong Min ;
  • Lee, Wonsik ;
  • Bang, Su-Ryong ;
  • Kim, Young Do
  • Received : 2016.04.08
  • Accepted : 2016.04.20
  • Published : 2016.04.28

Abstract

Additive manufacturing (AM) is defined as the manufacture of three-dimensional tangible products by additively consolidating two-dimensional patterns layer by layer. In this review, we introduce four fundamental conceptual pillars that support AM technology: the bottom-up manufacturing factor, computer-aided manufacturing factor, distributed manufacturing factor, and eliminated manufacturing factor. All the conceptual factors work together; however, business strategy and technology optimization will vary according to the main factor that we emphasize. In parallel to the manufacturing paradigm shift toward mass personalization, manufacturing industrial ecology evolves to achieve competitiveness in economics of scope. AM technology is indeed a potent candidate manufacturing technology for satisfying volatile and customized markets. From the viewpoint of the innovation technology adoption cycle, various pros and cons of AM technology themselves prove that it is an innovative technology, in particular a disruptive innovation in manufacturing technology, as powder technology was when ingot metallurgy was dominant. Chasms related to the AM technology adoption cycle and efforts to cross the chasms are considered.

Keywords

Additive manufacturing;Bottom-up manufacturing;Computer aided manufacturing;Distributed manufacturing;Eliminated manufacturing

References

  1. J. Moavenzadeh: The Future of Manufacturing: Opportunities to drive economic growth, A world Economic Forum Report, Puerto Vallarta (2012).
  2. ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies.
  3. F. M. Amirouche: Principles of Computer-Aided Design and Manufacturing, Pearson/Prentice Hall, Chicago (2004).
  4. G. Farin and J. Hoschek: Handbook of Computer Aided Geometric Design, Elsevier, Amsterdam (2002).
  5. Y. E. Kalay: Architecture's New Media: Principles, Theories, and Methods of Computer-Aided Design, The MIT Press, London (2004).
  6. J. Wang and D. Gu: Comput. Ind. Eng., 63 (2012) 1189. https://doi.org/10.1016/j.cie.2012.07.009
  7. C. Beccari and E. Farella: Comput. Aided Design, 42 (2010) 860. https://doi.org/10.1016/j.cad.2010.06.001
  8. R. B. Fisher: Comput. Aided Design, 36 (2004) 501. https://doi.org/10.1016/S0010-4485(03)00158-1
  9. H. Aoki, J. Mitani, Y. Kanamori and Y. Fukui: J. Comput. Des. Eng., 2 (2015) 47.
  10. H. Brodin and J. Saarimaki: Mechanical properties of lattice truss structures made of a selective laser melted superalloy, ScholarlyEditions, Beijing (2013).
  11. E. Lin and M. C. Boyce: J. Mech. Phys. Solids., 73 (2014) 166. https://doi.org/10.1016/j.jmps.2014.08.011
  12. R. Paul and S. Anand: Comput. Aided Design, 63 (2015) 86. https://doi.org/10.1016/j.cad.2015.01.002
  13. I. Braude: M.S. Thesis, Smooth 3D Surface Reconstruction from Contours of Biological Data with MPU Implicits, Drexel University, Philadelphia (2005).
  14. B. Cheng and K. Chou: Comput. Aided Design, 69 (2015) 102. https://doi.org/10.1016/j.cad.2015.06.007
  15. K. Hu, S. Jin and C. C. L. Wang: Comput. Aided Design, 65 (2015) 1. https://doi.org/10.1016/j.cad.2015.03.001
  16. K. A. Dowsland and W. B. Dowsland: Eur. J. Oper. Res., 56 (1992) 2. https://doi.org/10.1016/0377-2217(92)90288-K
  17. J. M. V. de Carvalho: Eur. J. Oper. Res., 141 (2002) 253. https://doi.org/10.1016/S0377-2217(02)00124-8
  18. Y. Zhang and A. Bernard: Procedia CIRP, 17 (2014) 308. https://doi.org/10.1016/j.procir.2014.01.096
  19. D. dimitrov, N. de Beer, P. Hugo and K. Schreve: Compr. Mater. Process., 10 (2014) 217.
  20. S. Maleksaeedi, H. Eng, F. E. Wiria, T. M. H. Ha and Z. He: J. Mater. Process. Tech., 214 (2014) 1301. https://doi.org/10.1016/j.jmatprotec.2014.01.019
  21. B. Utela, D. Storti, R. Anderson and M. Ganter: J. Manuf. Processes, 10 (2013) 96.
  22. M. Truker, D. Godlinski and F. Petzoldt: Mater. Charact., 59 (2008) 1728. https://doi.org/10.1016/j.matchar.2008.03.017
  23. T. T. Lamminmaki, J. P. Kettle, P. J. T. Puukko, C. J. Ridgway and P. A. C. Gane: J. Colloid Interface Sci., 365 (2012) 222. https://doi.org/10.1016/j.jcis.2011.08.045
  24. L. Song and J. Mazumder: IEEE Sens. J., 12 (2012) 958. https://doi.org/10.1109/JSEN.2011.2162316
  25. L. Song, V. Bagavath-Singh, B. Dutta and J. Mazumder: Int. J. Adv. Manuf. Technol., 58 (2011) 247.
  26. K. Bartkowiak: Phys. Procedia, 5 (2010) 623. https://doi.org/10.1016/j.phpro.2010.08.090
  27. J. C. Heigel, P. Michaleris and E. W. Reutzel: Addit. Manuf., 5 (2015) 9. https://doi.org/10.1016/j.addma.2014.10.003
  28. A. Raghavan, H. L. Wei, T. A. Palmer, T. Debroy: J. Laser Appl., 25 (2013) 052006. https://doi.org/10.2351/1.4817788
  29. B. N. Turner, R. Strong and S. A. Gold: Rapid Prototyping J., 20 (2014) 192. https://doi.org/10.1108/RPJ-01-2013-0012
  30. B. N. Turner, R. Strong and S. A. Gold: Rapid Prototyping J., 21 (2015) 250. https://doi.org/10.1108/RPJ-02-2013-0017
  31. Y. Jin, Y. He, J. Fu, W. Gan and Z. Lin: Addit. Manuf., 1-4 (2015) 32.
  32. C. B. Williams, F. Mistree and D. W. Rosen: Towards The Design of A Layer-Based Additive Manufacturing Process for The Realization of Metal Parts of Designed Mesostructure, SFF Symp. Texas (2005) 217.
  33. B. N. Turner, R. Strong and S. A. Gold: Rapid Prototyping J., 20 (2014) 192. https://doi.org/10.1108/RPJ-01-2013-0012
  34. D. Blanco, P. Fernandez and A. Noriega: J. Mater. Res., 29 (2014) 1876. https://doi.org/10.1557/jmr.2014.200
  35. S. Meteyer, X. Xu, N, Perry and Y. F. Zhao: Procedia CIRP, 15 (2014) 19. https://doi.org/10.1016/j.procir.2014.06.030
  36. X. Xu, S. Meteyer, N, Perry and Y. F. Zhao: Int. J. Prod. Res., 53 (2015) 7005. https://doi.org/10.1080/00207543.2014.937013
  37. A. T. Gaynor, N. A. Meisel, C. B. Williams and J. K. Guest: J. Manuf. Sci. E-T. ASME., 136 (2014) 061015-1. https://doi.org/10.1115/1.4028439
  38. T. Caffrey and T. Wohlers: Manuf. Eng., 154 (2015) 67.
  39. B. Reinarz, J. T. Sehrt, G. Witt, J. V. Kampen, J. Munzer and M. Ott: Optimization of media feed channels in Laser Beam Melting, Proc. ASPE. Berkeley (2014) 13.
  40. M. Jamshidinia, A. Sadek, W. Wang and S. Kelly: Addit. Manuf., 173 (2015) 20.
  41. W. S. Land, B. Zhang, J. Ziegert and A. Davies: Procedia Manuf., 1 (2015) 393. https://doi.org/10.1016/j.promfg.2015.09.047
  42. P. F. Zheng, L. C. Chan and T. C. Lee: Finite Elem. Anal. Des., 42 (2005) 189. https://doi.org/10.1016/j.finel.2005.06.002
  43. R. Holker, A. Jager, N. B. Khalifa and A. E. Tekkaya: Int. J. Precis. Eng. Manuf., 14, (2013) 1487. https://doi.org/10.1007/s12541-013-0200-1
  44. A. Atrian and F. Fereshteh-Saniee: Compos. Part. BENG., 47 (2013) 75. https://doi.org/10.1016/j.compositesb.2012.10.023
  45. M. H. Parsa and K. Yamaguchi: Int. J. Mech. Sci., 43 (2001) 2331. https://doi.org/10.1016/S0020-7403(01)00038-8
  46. M. G. Serror and J. Inoue: J. Mech. Eng., 139 (2013) 94. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000459
  47. A. Torregaray and C. Garcia: Mater. Design, 30 (2009) 4570. https://doi.org/10.1016/j.matdes.2009.04.014
  48. X. Xiao, C. Hsiung and Z. Zhao: Int. J. Mech. Sci., 50 (2008) 69. https://doi.org/10.1016/j.ijmecsci.2007.05.005
  49. I. Gibson, D. Rosen and B. Stucker: Additive Manufacturing Technologies, Springer, New York (2015) 63.
  50. K. Itoga, M. Yamato, J. Kobayashi, A. Kikuchi and T. Okano: Biomaterials, 25 (2004) 2047. https://doi.org/10.1016/j.biomaterials.2003.08.052
  51. L. H. Nguyen, M. Straub and M. Gu: Adv. Funct. Mater., 15 (2005) 209. https://doi.org/10.1002/adfm.200400212
  52. S. Moylan, J. Slotwinski, A. Cooke, K. Jurrens and M. A. Donmez: J. Res. Natl. Inst. Stan., 119 (2014) 429. https://doi.org/10.6028/jres.119.017
  53. Y. Lu and S. Chen: Appl. Phys. Lett., 92 (2008) 041109. https://doi.org/10.1063/1.2838751
  54. K. Shahzad, J. Deckers, J.P. Druth and J. Vleugels: J. Mater. Process. Tech., 213 (2013) 1484. https://doi.org/10.1016/j.jmatprotec.2013.03.014
  55. S. M. Gaytan, M. A. Cadena, H. Karim, D. Delfin, Y. Lin, D. Espalin, E. MacDonald and R. B. Wicker: Ceram. Int., 41 (2015) 6610. https://doi.org/10.1016/j.ceramint.2015.01.108
  56. S. M. Giannitelli, P. Mozetic, M. Trombetta and A. Rainer: Acta Biomater., 24 (2015) 1. https://doi.org/10.1016/j.actbio.2015.06.032
  57. J. Wan, J. M. Gasch and K. A. Mukherjee: J. Mater. Res., 16 (2001) 3274. https://doi.org/10.1557/JMR.2001.0451
  58. G. Pyka, A. Burakowski, G. Kerckhofs, M. Moesen, S. V. Bael, J. Schrooten and M. Wevers: Adv. Eng. Mater., 14 (2012) 363. https://doi.org/10.1002/adem.201100344
  59. E. Uhlmann, C. Schmiedel and J. Wendler: Procedia CIRP, 31 (2015) 209. https://doi.org/10.1016/j.procir.2015.03.091
  60. T. B. Kim, S. Yue, Z. Zhang, E. Jones, J. R. Jones and P. D. Lee: J. Mater. Process. Tech., 214 (2014) 2706. https://doi.org/10.1016/j.jmatprotec.2014.05.006
  61. Y. H. Liu, D. Hirama and S. Matsusaka: Powder Technol., 217 (2012) 607. https://doi.org/10.1016/j.powtec.2011.11.032
  62. M. P. Matheny and K. F. Graff: Powder Ultrasonics: Applications of High-Intensity Ultrasound, Woodhead, London (2014).
  63. S. Das, M. Wohlert, J. J. Beaman and D. L. Bourell: Mater. Design, 20 (1999) 115. https://doi.org/10.1016/S0261-3069(99)00017-5
  64. E. O. Olakanmi, R. F. Cochrane and K. W. Dalgarno: Prog. Mater. Sci., 74 (2015) 401. https://doi.org/10.1016/j.pmatsci.2015.03.002
  65. T. Wohlers: Wohlers Report 2014: 3D printing and Additive Manufacturing State of the Industry, Colorado (2014).
  66. J. E. Barnes, J. Williams, C. A. Blue and B. Peter: Titanium powder metallurgy-What's after the kroll process?, Int. Titan. Assoc, (2012).
  67. R. M. German: PIM Int., 3 (2009) 21.
  68. R. M. German: Particle Packing Characteristics, Metal Powder Industries Federation, Princeton (1989).
  69. A. J. Pinkerton and L. Li: Int. J. Adv. Manuf. Technol., 25 (2005) 471. https://doi.org/10.1007/s00170-003-1844-2
  70. A. J. Pinkerton and L. Li: J. Eng. Manuf., 217 (2003) 741. https://doi.org/10.1243/09544050360673134
  71. S. Kumar and J. P. Kruth: 28 (2007) 400.
  72. A. Simchi and H. Pohl: Mater. Sci. Eng. A, 383 (2004) 191. https://doi.org/10.1016/j.msea.2004.05.070
  73. K. Maeda and T. H. C. Chids: J. Mater. Process. Tech., 149 (2004) 609. https://doi.org/10.1016/j.jmatprotec.2004.02.024
  74. A. Gaard, P. Krakhmalev and J. Bergstrom: J. Alloy. Compd., 421 (2006) 166. https://doi.org/10.1016/j.jallcom.2005.09.084
  75. E. Yu and G. B. Shaffer: Acta Mat., 57 (2009) 163. https://doi.org/10.1016/j.actamat.2008.08.065
  76. L. Lu, J. Y. H. Fuh, Z. D. Chen, C. C. Leong and Y. S. Wong: Mater. Res. Bull., 35 (2000) 1555. https://doi.org/10.1016/S0025-5408(00)00339-1
  77. X. C. Li, J. Stampfl and F. B. Prinz: Mater. Sci. Eng. A, 282 (2000) 86. https://doi.org/10.1016/S0921-5093(99)00781-9
  78. S. H. Masood and W. Q. Song: Mater. Design, 25 (2004) 587. https://doi.org/10.1016/j.matdes.2004.02.009
  79. C. Hong, D. Gu, D. Dai, M. Alkjayat, W. Urban, P. Yuan, S. Cao, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong, and R. Poprawe: Mater. Sci. Eng. A, 635 (2015) 118. https://doi.org/10.1016/j.msea.2015.03.043
  80. D. E. Cooper, N. Blundell, S. Maggs and G. J. Gibbons: J. Mater. Process. Tech., 213 (2013) 2191. https://doi.org/10.1016/j.jmatprotec.2013.06.021
  81. D. Gu, H. Wang, F. Chang, D. Dai, P. Yuan, Y. Hagedorn and W. Meiners: Physics Procedia, 56 (2014) 108. https://doi.org/10.1016/j.phpro.2014.08.153
  82. A. Emamian, M. Alimardani and A. Khajepour: J. Manuf. Processes, 16 (2014) 511. https://doi.org/10.1016/j.jmapro.2014.07.002
  83. M. Vaezi, H. Seitz and S. Yang: Int. J. Adv. Manuf. Tech., 67 (2013) 1721. https://doi.org/10.1007/s00170-012-4605-2
  84. S. Lim, R. A. Buswell, T. T. Le, S. A. Austin, A. G. F. Gibb and T. Thorpe: Automat. Constr., 21 (2012) 262. https://doi.org/10.1016/j.autcon.2011.06.010
  85. T. Brajlih, B. Valentan, J. Balic and D. Igor: 'Speed and accuracy evaluation of additive manufacturing machines', Rapid Prototyping J., 17 (2011) 64. https://doi.org/10.1108/13552541111098644
  86. D. Salehi and M. Brandt: Int. J. Adv. Manuf. Technol., 29 (2006) 273. https://doi.org/10.1007/s00170-005-2514-3
  87. H. Gharavi and R. Ghafurian: Smart Grid: The Electric energy system of the future, P. IEEE. Vol. 99, Shanghai, (2011) 917. https://doi.org/10.1109/JPROC.2011.2124210
  88. J. R. Nicholls, N. J. Simms, W. Y. Chan and H. E. Evans: Surf. Coat. Tech., 149 (2002) 236. https://doi.org/10.1016/S0257-8972(01)01499-2
  89. D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquere, V. Zerrouki and J. Vigneau: Int. J. Mach. Tool. Manu., 44 (2004) 439. https://doi.org/10.1016/S0890-6955(03)00159-7
  90. C. Holshouser, C. Newell, S. Palas, C. duty, L. Love, V. Kunc, R. Lind, P. Lloyd, R. Degoff, W. Peter, C. Blue: Adv. Mater. Process., 171 (2013) 15.
  91. B. Kianian, S. Tavassoli and T. C. Larsson: Procedia CIRP, 26 (2015) 93. https://doi.org/10.1016/j.procir.2014.07.109
  92. R. Haux: Int. J. Med. Inform., 75 (2006) 268. https://doi.org/10.1016/j.ijmedinf.2005.08.002
  93. A. D. Brooker, J. Ward and L. Wang: SAE Int. J., 2 (2013).
  94. Y. Koren, S. J. Hu, P. Gu and M. Shpitalni: CIRP Ann-Manuf. Technol., 62 (2013) 719. https://doi.org/10.1016/j.cirp.2013.06.001
  95. P. A. Kobryn and S. L.Semiatin: JOM-US., 53 (2001) 40.
  96. Y. Y. Sun, S. Gulizia, C. H. Oh, C. Doblin, Y. F. Yang and M. Qiani: JOM-US., 67 (2015) 564. https://doi.org/10.1007/s11837-015-1301-3
  97. B. Baufeld, O. V. D Biest and R. Gault: Mater. Design, 31 (2010) 106. https://doi.org/10.1016/j.matdes.2009.11.032
  98. J. A. Slotwinski, E. J. Garboczi, P. E. Stutzman, C. F. Ferraris, S. S. Watson and M. A. Peltz: J. Res. Natl. Inst. Stan., 119 (2014) 460. https://doi.org/10.6028/jres.119.018
  99. M. Akira, S. Naoki, J.-D. Kim, M. Masami and K. Seiji, Proc. SPIE: Int. Soc. Opt. Eng., 3888 (2000) 34.
  100. G. Li, Y. Cai and Y. Wu: Opt. Laser. Eng., 47 (2009) 990. https://doi.org/10.1016/j.optlaseng.2009.04.013
  101. K. Y. Benyounis, A. G. Olabi and M. S. J. Hashmi: J. Mater. Process. Tech., 164-165 (2005) 978. https://doi.org/10.1016/j.jmatprotec.2005.02.060
  102. B. S. Yilbas, A. F. M. Arif and B. J. A. Aleem: Opt. Laser. Tech., 42 (2010) 760. https://doi.org/10.1016/j.optlastec.2009.11.024
  103. J. C. Heigel, P. Michaleris and E. W. Reutzel: Addit. Manuf., 5 (2015) 9. https://doi.org/10.1016/j.addma.2014.10.003
  104. W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs, D. E Hahn, C. Kamath and A. M. Rubenchik: J. Mater. Process. Tech., 214 (2014) 2915. https://doi.org/10.1016/j.jmatprotec.2014.06.005
  105. S. M. Gaytan, M. A. Cadena, H. Karim, D. Delfin, Y. Lin, D. Espalin, E. MacDonald and R. B. Wicker: Ceram. Int., 41 (2015) 6610. https://doi.org/10.1016/j.ceramint.2015.01.108
  106. W. C. Lee, C. C. Wei and S. C. Chung: J. Mater. Process. Tech., 214 (2014) 2366. https://doi.org/10.1016/j.jmatprotec.2014.05.004

Cited by

  1. Technology Trend of the additive Manufacturing (AM) vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.494

Acknowledgement

Supported by : Korea Institute of Industrial Technology, Hanyang University