DOI QR코드

DOI QR Code

Resonance Elastic Scattering and Interference Effects Treatments in Subgroup Method

  • Li, Yunzhao (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • He, Qingming (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Cao, Liangzhi (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Wu, Hongchun (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zu, Tiejun (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • 투고 : 2015.11.25
  • 심사 : 2015.12.30
  • 발행 : 2016.04.25

초록

Based on the resonance integral (RI) tables produced by the NJOY program, the conventional subgroup method usually ignores both the resonance elastic scattering and the resonance interference effects. In this paper, on one hand, to correct the resonance elastic scattering effect, RI tables are regenerated by using the Monte Carlo code, OpenMC, which employs the Doppler broadening rejection correction method for the resonance elastic scattering. On the other hand, a fast resonance interference factor method is proposed to efficiently handle the resonance interference effect. Encouraging conclusions have been indicated by the numerical results. (1) For a hot full power pressurized water reactor fuel pin-cell, an error of about +200 percent mille could be introduced by neglecting the resonance elastic scattering effect. By contrast, the approach employed in this paper can eliminate the error. (2) The fast resonance interference factor method possesses higher precision and higher efficiency than the conventional Bondarenko iteration method. Correspondingly, if the fast resonance interference factor method proposed in this paper is employed, the $k_{inf}$ can be improved by ~100 percent mille with a speedup of about 4.56.

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. A. Hebert, The Ribon extended self-shielding model, Nucl. Sci. Eng. 151 (2005) 1-24. https://doi.org/10.13182/NSE151-1-24
  2. T. Takeda, H. Fujimoto, K. Sengoku, Application of multiband method to KUCA tight-pitch lattice analysis, J. Nucl. Sci. Technol. 28 (1991) 863-869. https://doi.org/10.1080/18811248.1991.9731440
  3. H.G. Joo, J.Y. Cho, K.S. Kim, C.C. Lee, S.Q. Zee, Methods and performance of a three-dimensional whole-core transport code DeCART, in: Proceedings of the Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments (PHYSOR) 2004, Chicago (IL), April 25-29, 2004.
  4. Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374. https://doi.org/10.1016/j.anucene.2013.06.031
  5. Y. Liu, B. Collins, B. Kochunas, W. Martin, K. Kim, M. Williams, Resonance self-shielding methodology in mpact, in: Proceedings of Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C) 2013, Sun Valley (ID), May 5-9, 2013.
  6. H.G. Joo, G.Y. Kim, L. Pogosbekyan, Subgroup weight generation based on shielded pin-cell cross section conservation, Ann. Nucl. Energy 36 (2009) 859-868. https://doi.org/10.1016/j.anucene.2009.03.017
  7. R.E. MacFarlane, NJOY99.0: a Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Evaluated Nuclear Data, 2000. Los Alamos (NM).
  8. X-5 Monte Carlo Team, MCNP-a General Monte Carlo n-particle Transport Code, Version 5, 2003. Los Alamos, New Mexico.
  9. D. Lee, K. Smith, J. Rhodes, The impact of $^{238}U$ resonance elastic scattering approximations on thermal reactor Doppler reactivity, in: Proceedings of International Conference on the Physics of Reactors (PHYSOR) 2008, Interlaken (Switzerland), September 14-19, 2008.
  10. A. Zoia, E. Brun, C. Jouanne, F. Malvagi, Doppler broadening of neutron elastic scattering kernel in Tripoli-4, Ann. Nucl. Energy 54 (2013) 218-226. https://doi.org/10.1016/j.anucene.2012.11.023
  11. B. Becker, On the Influence of the Resonance Scattering Treatment in Monte Carlo Codes on High Temperature Reactor Characteristics, University of Stuttgart, Stuttgart (Germany), 2010.
  12. C.H. Lim, Y.S. Jung, H.G. Joo, Incorporation of resonance upscattering and intra-pellet power profile in direct whole core calculation, in: Conf. Korean Nucl. Soc, 2012.
  13. L. Mao, I. Zmijarevic, The Up-scattering Treatment in the Fine-structure Self-shielding Method in APOLLO3, in: Proceedings of International Conference on the Physics of Reactors (PHYSOR) 2014, The Westin Miyako, Kyoto, Japan, September 28 - October 3, 2014.
  14. M. Ouisloumen, R. Sanchez, A model for neutron scattering off heavy isotopes that accounts for thermal agitation effects, Nucl. Sci. Eng. 107 (1991) 189-200. https://doi.org/10.13182/NSE89-186
  15. W. Rothenstein, Proof of the formula for the ideal gas scattering kernel for nuclides with strongly energy dependent scattering cross sections, Ann. Nucl. Energy 31 (2004) 9-23. https://doi.org/10.1016/S0306-4549(03)00216-0
  16. R. Dagan, On the use of S(${\alpha},{\beta}$) tables for nuclides with well pronounced resonances, Ann. Nucl. Energy 32 (2005) 367-377. https://doi.org/10.1016/j.anucene.2004.11.003
  17. B. Becker, R. Dagan, G. Lohnert, Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel, Ann. Nucl. Energy 36 (2009) 470-474. https://doi.org/10.1016/j.anucene.2008.12.001
  18. T. Mori, Y. Nagaya, Comparison of resonance elastic scattering models newly implemented in MVP continuous-energy Monte Carlo code, J. Nucl. Sci. Technol. 46 (2009) 793-798. https://doi.org/10.1080/18811248.2007.9711587
  19. H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, Mccard: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2012) 161-176. https://doi.org/10.5516/NET.01.2012.503
  20. P.K. Romano, B. Forget, The OpenMC Monte Carlo particle transport code, Ann. Nucl. Energy 51 (2013) 274-281. https://doi.org/10.1016/j.anucene.2012.06.040
  21. J.R. Askew, F.J. Fayers, P.B. Kemshell, A general description of lattice code WIMS, J. Br. Nucl. Energy Soc. 5 (1966) 546-585.
  22. T. Takeda, Y. Kanayama,Amultiband method with resonance interference effect, Nucl. Sci. Eng. 131 (1999) 401-410. https://doi.org/10.13182/NSE99-A2042
  23. S.E. Huang, K. Wang, D. Yao, An advanced approach to calculation of neutron resonance self-shielding, Nucl. Eng. Des. 241 (2011) 3051-3057. https://doi.org/10.1016/j.nucengdes.2011.05.014
  24. A. Hebert, A mutual resonance shielding model consistent with Ribon subgroup equations, in: PHYSOR 2004, Chicago (IL), April 25-29, 2004.
  25. M.L. Williams, Correction of multigroup cross sections for resolved resonance interference in mixed absorbers, Nucl. Sci. Eng. 83 (1993) 37-49.
  26. G. Chiba, A combined method to evaluate the resonance self shielding effect in power fast reactor fuel assembly calculation, J. Nucl. Sci. Technol. 40 (2003) 537-543. https://doi.org/10.1080/18811248.2003.9715389
  27. K. Kim, M.L. Williams, Preliminary assessment of resonance interference consideration by using 0-D slowing down calculation in the embedded self-shielding method, Trans. Am. Nucl. Soc. 109 (2012).
  28. K.S. Kim, S.G. Hong, A new procedure to generate resonance integral table with an explicit resonance interference for transport lattice codes, Ann. Nucl. Energy 38 (2011) 118-127. https://doi.org/10.1016/j.anucene.2010.08.005
  29. S. Peng, X. Jiang, S. Zhang, D. Wang, Subgroup method with resonance interference factor table, Ann. Nucl. Energy 59 (2013) 176-187. https://doi.org/10.1016/j.anucene.2013.04.005
  30. D.J. Powney, T.D. Newton, Overview of the WIMS 9 Resonance Treatment, Serco Assurance, Dorchester, 2004.
  31. E. Wehlage, D. Knott, V.W. Mills, Modeling resonance interference effects in the lattice physics code LANCER02, in: Proceedings of Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C) 2005, Avignon (France), September 12-15, 2005.
  32. Y. Liu, W. Martin, M. Williams, K.S. Kim, A full-core resonance self-shielding method using a continuous-energy quasieone-dimensional slowing-down solution that accounts for temperature-dependent fuel subregions and resonance, Nucl. Sci. Eng. 180 (2015) 247-272. https://doi.org/10.13182/NSE14-65
  33. Y. Liu, W.R. Martin, K.S. Kim, M.L. Williams, Modeling resonance interference by 0-D slowing-down solution with embedded self-shielding method, in: Proceedings of Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C) 2013, Sun Valley (ID), May 5-9, 2013.
  34. S. Choi, A. Khassenov, D. Lee, Resonance self-shielding method using resonance interference factor library for practical lattice physics computations of LWRs, J. Nucl. Sci. Technol. (2015). Available from: http://dx.doi.org/10.1080/00223131.2015.1095686. https://doi.org/10.1080/00223131.2015.1095686
  35. L. Mao, R. Sanchez, I. Zmijarevic, Considering the upscattering in resonance interference treatment in APOLLO3, in: Proceedings of Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C) 2015, Nashville (TN), April 19-23, 2015.
  36. A. Hebert, Applied Reactor Physics, Presses Inter Polytechnique, 2009.
  37. H. Zhang, H. Wu, L. Cao, An acceleration technique for 2D MOC based on Krylov subspace and domain decomposition methods, Ann. Nucl. Energy 38 (2011) 2742-2751. https://doi.org/10.1016/j.anucene.2011.08.015
  38. F. Leszczynski, Neutron resonance treatment with details in space and energy for pin cells and rod clusters, Ann. Nucl. Energy 14 (1987) 589-601. https://doi.org/10.1016/0306-4549(87)90094-6
  39. Y. Ishiguro, H. Takano, PEACO: a Code for Calculation of Group Constant of Resonance Energy Region in Heterogeneous Systems, JAERI, 1971.
  40. P.H. Kier, A.A. Robba, Rabble, a Program for Computation of Resonance Absorption in Multiregion Reactor Cells, 1967.
  41. R.J.J. Stamm'ler, HELIOS Methods, Studsvik Scandpower, Waltham, 2001.
  42. E. Sartori, Standard Energy Group Structures of Cross Section Libraries for Reactor Shielding, Reactor Cell and Fusion Neutronics Applications: VITAMIN-J, ECCO-33, ECCO-2000 and XMAS, JEF/DOC-315, Revision 3, NEA Data Bank, Gif-sur-Yvette Cedex, France, 1990.
  43. L. He, H. Wu, L. Cao, Y. Li, Improvements of the subgroup resonance calculation code SUGAR, Ann. Nucl. Energy 66 (2014) 5-12. https://doi.org/10.1016/j.anucene.2013.11.029
  44. L. Cao, H. Wu, Q. Liu, Q. Chen, Arbitrary geometry resonance calculation using subgroup method and method of characteristics, in: Proceedings of Mathematics and Computational Methods Ap plied to Nuclear Science & Engineering (M&C) 2011, Rio de Janeiro (Brazil), May8-12, 2011.
  45. R.D. Mosteller, Computational Benchmarks for the Doppler Reactivity Defect, Joint Benchmark Committee of the Mathematics and Computation, Radiation Protection and Shielding, and Reactor Physics Divisions of the American Nuclear Society, 2006.
  46. E.E. Sunny, F.B. Brown, B.C. Kiedrowski, W.R. Martin, Temperature effects of resonance scattering for epithermal neutrons in MCNP, in: PHYSOR 2012, April 15-20, 2012. Knoxville (TN).