Photoreduction of Carbon Dioxide using Graphene Oxide-Titanium Oxide Composite

그래핀 옥사이드와 이산화티타늄 조합을 이용한 이산화탄소의 광환원

Lee, Myung-Kyu;Jang, Jun-Won;Park, Sung-Jik;Park, Jae-Woo

  • Received : 2015.09.30
  • Accepted : 2015.12.23
  • Published : 2016.01.30


In this study, we synthesized a combination of graphene oxide (GO) and titanium dioxide (TiO2) and confirm that GO can be used for CO2 photoreduction. TiO2 exhibited highly efficient combination with other conventional electric charges generated by these paration phenomenon for suppression of hole-electron recombination. This improved the efficiency of CO2 photoreduction. The synthetic form of GO-TiO2 used in this study was agraphene sheet surrounded by TiO2 powder. Efficiency and stability were enhanced by combination of GO and TiO2. In a CO2 photoreduction experiment, the highest CO conversion rate was 0.652 μmol/g·h in GO10-TiO2 (2.3-fold that of pure TiO2) and the highest CH4 production rate was 0.037 μmol/g·h in GO0.1-TiO2 (2.4-fold that of pure TiO2). GO enhances photocatalytic efficiency by functioning as a support and absorbent, and enabling charge separation. With increasing GO concentration, the CH4 level decreases to~45% due to decreased transfer of electrons. In this study, TiO2 together with GO yielded a different result than the normal doping effect and selective CO2 photoreduction.


CO2;Graphene oxide;Photocatalytic reduction;TiO2


  1. Hsu, H. C., Shown, I., Wei, H. Y., Chang, Y. C., Du, H. Y., Lin, Y. G., Tseng, C. A., Wang, C. H., Chen, L. C., and Lin, Y. C. (2012). Graphene Oxide as a Promising Photocatalyst for CO2 to Methanol Conversion, Nanoscale, 5(1), pp. 262-268.
  2. Gao, P., Li, A., Sun, D. D., and Ng, W. J. (2014). Effects of Various TiO2 Nanostructures and Graphene Oxide on Photocatalytic Activity of TiO2, Journal of Hazardous Materials, 279, pp. 96-104.
  3. Garcia-Gallastegui, A., Iruretagoyena, D., Gouvea, M., Mokhtar, A. Asiri, M., Basahel, S. N., Al-Thabaiti, S. A., Alyoubi, A. O., Chadwick, D., and Shaffer, M. S. (2012). Graphene Oxide as Support for Layered Double Hydroxides: Enhancing the CO2 Adsorption Capacity, Chemistry of Materials, 24(23), pp. 4531-4539.
  4. Gaya, U. I. and Abdullah, A. H., (2008). Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: a Review of Fundamentals, Progress and Problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), pp. 1-12.
  5. Kim, L. J., Jang, J. W., and Park, J. W. (2014). Nano TiO2-Functionalized Magnetic-Cored Dendrimer as a Photocatalyst, Applied Catalysis B: Environmental, 147, pp. 973-979.
  6. Hu, B., Guild, C., and Suib, S. L. (2013). Thermal, Electrochemica and Photochemical Conversion of CO2 to Fuels and Value-added Products, Journal of CO2 Utilization, 1, pp. 18-27.
  7. Jiang, G., Lin, Z., Chen, C., Zhu, L., Chang, Q., Wang, N., Wei, W., and Tang, H. (2011). TiO2 Nanoparticles Assembled on Graphene Oxide Nanosheets with High Photocatalytic Activity for Removal of Pollutants, Carbon, 49(8), pp. 2693-2701.
  8. Kim, C. H., Kim, B. H., and Yang, K. S. (2012). TiO2 Nanoparticles Loaded on Graphene/Carbon Composite Nanofibers by Electrospinning for Increased Photocatalysis, Carbon, 50(7), pp. 2472-2481.
  9. Kočí, K., Matějů, K., Obalová, L., Krejčíková, S., Lacný, Z., Plachá, D., and Šolcová, O. (2010). Effect of Silver Doping on the TiO2 for Photocatalytic Reduction of CO2, Applied Catalysis B: Environmental, 96(3), pp. 239-244.
  10. Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A., and Car, R. (2008). Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Letters, 8(1), pp. 36-41.
  11. Lee, M., Amaratunga, P., Kim, J., and Lee, D. (2010). TiO2 Nanoparticle Photocatalysts Modified with Monolayer-Protected Gold Clusters, The Journal of Physical Chemistry C, 114(43), pp. 18366-18371.
  12. Liu, G., Hoivik, N., Wang, K., and Jakobsen, H. (2012). Engineering TiO2 Nanomaterials for CO2 Conversion/Solar Fuels, Solar Energy Materials and Solar Cells, 105, pp. 53-68.
  13. Park, S. J. (2013). History of Graphene Oxide and Future Direction, Korean Industrial Chemistry News, 16(3), pp. 1-5. [Korean Literature]
  14. Liu, L., Zhao, H., Andino, J. M., and Li, Y. (2012). Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry, Acs Catalysis, 2(8), pp. 1817-1828.
  15. Nasution, H. W., Purnama, E., Kosela, S., and Gunlazuardi, J. (2005). Photocatalytic Reduction of CO2 on Copper-Doped Titania Catalysts Prepared by Improved-Impregnation Method, Catalysis Communications, 6(5), pp. 313-319.
  16. Olivier, J. G., Janssens-Maenhout, G., Muntean, M., and Peter, J. A. H. W. (2014). Trends in Global CO2 Emissions: 2014 Report, Hague: PBL Netherlands Environmental Assessment Agency, pp. 10-11.
  17. Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y., and Balkus Jr, K. J. (2012). Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity, Acs Catalysis, 2(6), pp. 949-956.
  18. Sayama, K., Hara, K., Mori, N., Satsuki, M., Suga, S., Tsukagoshi, S., Abe, Y., Sugihara, H., and Arakawa, H. (2000). Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain, Chemical Communications, (13), pp. 1173-1174.
  19. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., and Lin, Y. (2010). Graphene Based Electrochemical Sensors and Biosensors: a Review, Electroanalysis, 22(10), pp. 1027-1036.
  20. Song, C. (2006). Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing, Catalysis Today, 115(1-4), pp. 2-32.
  21. Williams, G., Seger, B., and Kamat, P. V. (2008). TiO2-Graphene Nanocomposites, UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS nano, 2(7), pp. 1487-1491.
  22. Spinner, N. S., Vega, J. A., and Mustain, W. E. (2012). Recent Progress in the Electrochemical Conversion and Utilization of CO2, Catalysis Science and Technology, 2(1), pp. 19-28.
  23. Tan, L. L., Ong, W. J., Chai, S. P., and Mohamed, A. R. (2013). Reduced Graphene Oxide-TiO2 Nanocomposite as a Promising Visible-Light-Active Photocatalyst for the Convertsion of Carbon Eioxide, Nanoscale Research Letters, 8(1), pp. 1-9.
  24. Upadhye, A. A., Ro, I., Zeng, X., Kim, H. J., Tejedor, I., Anderson, M. A., Dumesic, J. A., and Huber, G. W. (2015). Plasmon-Enhanced Reverse Water Gas Shift Reaction over Oxide Supported Au Catalysts, Catalysis Science & Technology.
  25. Yu, C., Fan, Q., Xie, Y., Chen, J., and Jimmy, C. Y. (2012). Sonochemical Fabrication of Novel Square-Shaped F Doped TiO2 Nanocrystals with Enhanced Performance in Photocatalytic Degradation of Phenol, Journal of Hazardous Materials, 237, pp. 38-45.
  26. Yui, T., Kan, A., Saitoh, C., Koike, K., Ibusuki, T., and Ishitani, O. (2011). Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2, ACS Applied Materials & Interfaces, 3(7), pp. 2594-2600.
  27. Zhao, H., Liu, L., Andino, J. M., and Li, Y. (2013). Bicrystalline TiO2 with Controllable Anatase Brookite Phase Content for Enhanced CO2 Photoreduction to Fuels, Journal of Materials Chemistry A, 1(28), pp. 8209-8216.