DOI QR코드

DOI QR Code

Glass Forming Ability and Mechanical Properties of (Fe79C11B8Si2)100-XCrX (X = 0-8) Amorphous Ribbons

(Fe79C11B8Si2)100-XCrX (X = 0-8) 조성 비정질 리본의 크롬 함량에 따른 비정질 형성능, 기계적 특성 평가

  • Received : 2015.12.28
  • Accepted : 2016.01.25
  • Published : 2016.02.29

Abstract

Iron based amorphous ribbons with the nominal compositions of $(Fe_{79}C_{11}B_8Si_2)_{100-X}Cr_X$ (X = 0,2,4,6,8 at%) have been developed as reinforcements that can be applied to the concrete materials. Mechanical properties and glass forming ability of the ribbons can be enhanced by the optimum amounts of Cr additions that can also improve corrosion properties of the ribbons. Vein patterns typical of the fractured surface morphology of amorphous alloys have been observed on the surfaces of ribbons after tensile tests. It is inferred from the EDS analysis results of vein patterns that carbon segregations occur within the narrow shear band regions.

Keywords

Amorphous ribbon;Shear band;Energy dispersive spectroscopy

References

  1. F. E. Luborsky, Amorphous Metallic Alloys, Butterworth & Co (Publishers) Ltd., London (1983) 8-15.
  2. T. Masumoto and R. Maddin, Mater. Sci. Eng., "Structural Stability and Mechanical Properties of Amorphous Metals", 19 (1975) 1-24. https://doi.org/10.1016/0025-5416(75)90002-6
  3. W. J. Botta, J. E. Berger, C. S. Kiminami, V. Roche, R. P. Nogueira and C. Bolfarini, J. Alloy Compd., "Corrosion resistance of Fe-based amorphous alloys", 586 (2014) S105-S110. https://doi.org/10.1016/j.jallcom.2012.12.130
  4. S. Virtanen and H. Bohni, Corr. Sci., "Passivity, breakdown and repassivation of glassy Fe-Cr-P alloys", 31 (1990) 333-342. https://doi.org/10.1016/0010-938X(90)90128-R
  5. P. Duwez, Progress in Solid State Chemistry, Vol. 3 Pergamon, Oxford (1966) 377-406.
  6. A. Inoue, Acta Mater., "Stabilization of metallic supercooled liquid and bulk amorphous alloys", 48 (2000) 279-306. https://doi.org/10.1016/S1359-6454(99)00300-6
  7. Yoon SH, Park EB, Kim SW, Yi SH, Kim MJ and Shin JK, Fe base amorphous alloy with high carbon, KR Patent 105096380000, April 1st, 2015.
  8. Kim MJ, Kim SW, Yoon SH and Yi SH, Korean J. Met. Mater., "Effects of Cr content in amorphous ribbons (Fe0.79C0.11Si0.02B0.08)100-xCrx on their corrosion resistance", 52 (2014) 129-135. https://doi.org/10.3365/KJMM.2014.52.2.129
  9. Y. Wu, X.D. Hui, Z.P. Lu, Z.Y. Liu, L. Liang and G.L. Chen, J. Alloy Compd., "Effects of metalloid elements on the glassforming ability of Fe-based alloys", 467 (2009) 187-190. https://doi.org/10.1016/j.jallcom.2007.12.002
  10. M. Naka and T. Masumoto, Sci. Rep. Res. Inst. Tohoku Univ., "Effect of metalloidal elements on the thermal stability of amorphous iron-base alloys, A27 (1979) 118-126.
  11. A. K. Niessen, F. R. de Boer, R. Boom, P. F. de Chatel, W. C. M. Mattens and A. R. Miedema, Calphad, "Model predictions for the enthalpy of formation of transition metal alloys II", 7 (1983) 51-70. https://doi.org/10.1016/0364-5916(83)90030-5
  12. K. Mondal and B. S. Murty, J. Non-Cryst. Solids, "On the parameters to assess the glass forming ability of liquids", 351 (2005) 1366-1371. https://doi.org/10.1016/j.jnoncrysol.2005.03.006
  13. J. A. Verduzco, I. Betancourt, F. Saavedra and E. Reynoso, J. Non-Cryst. Solids, "Mechanical properties of amorphous Febased melt spun ribbons with Cr additions", 329 (2003) 163-166. https://doi.org/10.1016/j.jnoncrysol.2003.08.033
  14. C. A. Pampillo, J. Mater. Sci., "Flow and fracture in amorphous alloys", 10 (1975) 1194-1227. https://doi.org/10.1007/BF00541403
  15. F. Spaepen, Acta Matall., "A microscopic mechanism for steady state inhomogeneous flow in metallic glasses", 25 (1976) 407-415.
  16. J. J. Lewandowski and A. L. Greer, Nat. Mater., "Temperature rise at shear bands in metallic glasses", 5 (2006) 15. https://doi.org/10.1038/nmat1536

Acknowledgement

Supported by : 국토교통부