건강보험청구자료에서 동반질환 보정방법

DOI QR코드

DOI QR Code

김경훈
Kim, Kyoung Hoon

  • 투고 : 2016.02.02
  • 심사 : 2016.03.25
  • 발행 : 2016.03.31

초록

The value of using health insurance claim database is continuously rising in healthcare research. In studies where comorbidities act as a confounder, comorbidity adjustment holds importance. Yet researchers are faced with a myriad of options without sufficient information on how to appropriately adjust comorbidity. The purpose of this study is to assist in selecting an appropriate index, look back period, and data range for comorbidity adjustment. No consensus has been formed regarding the appropriate index, look back period and data range in comorbidity adjustment. This study recommends the Charlson comorbidity index be selected when predicting the outcome such as mortality, and the Elixhauser's comorbidity measures be selected when analyzing the relations between various comorbidities and outcomes. A longer look back period and inclusion of all diagnoses of both inpatient and outpatient data led to increased prevalence of comorbidities, but contributed little to model performance. Limited data range, such as the inclusion of primary diagnoses only, may complement limitations of the health insurance claim database, but could miss important comorbidities. This study suggests that all diagnoses of both inpatients and outpatients data, excluding rule-out diagnosis, be observed for at least 1 year look back period prior to the index date. The comorbidity index, look back period, and data range must be considered for comorbidity adjustment. To provide better guidance to researchers, follow-up studies should be conducted using the three factors based on specific diseases and surgeries.

키워드

Health insurance claim database;Comorbidity adjustment;Comorbidity index;Look back period;Data range

참고문헌

  1. Iezzoni LI. Risk adjustment for measuring health care outcomes. 3rd ed. Chicago (IL): Health Administration Press; 2003.
  2. Kim KH, Ahn LS. A comparative study on comorbidity measurements with Lookback period using health insurance database: focused on patients who underwent percutaneous coronary intervention. J Prev Med Public Health 2009;42(4):267-273. DOI: http://dx.doi.org/10.3961/jpmph.2009.42.4.267. https://doi.org/10.3961/jpmph.2009.42.4.267
  3. Klabunde CN, Potosky AL, Legler JM, Warren JL. Development of a comorbidity index using physician claims data. J Clin Epidemiol 2000;53(12):1258-1267. DOI: http://dx.doi.org/10.1016/s0895-4356(00)00256-0. https://doi.org/10.1016/S0895-4356(00)00256-0
  4. Jang S, Park C, Jang S, Yoon HK, Shin CS, Kim DY, et al. Medical service utilization with osteoporosis. Endocrinol Metab 2010;25(4):326-339. DOI: http://dx.doi.org/10.3803/enm.2010.25.4.326. https://doi.org/10.3803/EnM.2010.25.4.326
  5. Im JH, Lee KS, Kim KY, Hong NS, Lee SW, Bae HJ. Follow-up study on mortality in Korean stroke patients. J Korean Med Assoc 2011;54(11):1199-1208. DOI: http://dx.doi.org/10.5124/jkma.2011.54.11.1199. https://doi.org/10.5124/jkma.2011.54.11.1199
  6. Seo EW, Lee KS. Difference in healthcare utilization for percutaneous transluminal coronary angioplasty inpatients by insurance types: propensity score matching analysis. Health Policy Manag 2015;25(1):3-10. DOI: http://dx.doi.org/10.4332/kjhpa.2015.25.1.3. https://doi.org/10.4332/KJHPA.2015.25.1.3
  7. Cho SJ, Chung SH, Oh JY. Differences between diabetic patients' tertiary hospital and non-tertiary hospital utilization according to comorbidity score. Health Policy Manag 2011;21(4):527-540. DOI: http://dx.doi.org/10.4332/kjhpa.2011.21.4.527. https://doi.org/10.4332/KJHPA.2011.21.4.527
  8. Kim KH. Comparative study on three algorithms of the ICD-10 Charlson comorbidity index with myocardial infarction patients. J Prev Med Public Health 2010;43(1):42-49. DOI: http://dx.doi.org/10.3961/jpmph.2010.43.1.42. https://doi.org/10.3961/jpmph.2010.43.1.42
  9. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005;43(11):1130-1139. DOI: http://dx.doi.org/10.1097/01.mlr.0000182534.19832.83. https://doi.org/10.1097/01.mlr.0000182534.19832.83
  10. Von Korff M, Wagner EH, Saunders K. A chronic disease score from automated pharmacy data. J Clin Epidemiol 1992;45(2):197-203. DOI: http://dx.doi.org/10.1016/0895-4356(92)90016-g. https://doi.org/10.1016/0895-4356(92)90016-G
  11. Sloan KL, Sales AE, Liu CF, Fishman P, Nichol P, Suzuki NT, et al. Construction and characteristics of the RxRisk-V: a VA-adapted pharmacy-based case-mix instrument. Med Care 2003;41(6):761-774. DOI: http://dx.doi.org/10.1097/01.mlr.0000064641.84967.b7.
  12. Woo HK, Park JH, Kang HS, Kim SY, Lee SI, Nam HH. Charlson comorbidity index as a predictor of long-term survival after surgery for breast cancer: a nationwide retrospective cohort study in South Korea. J Breast Cancer 2010;13(4):409-417. DOI: http://dx.doi.org/10.4048/jbc.2010.13.4.409. https://doi.org/10.4048/jbc.2010.13.4.409
  13. Kim KH, Lee SM, Paik JW, Kim NS. The effects of continuous antidepressant treatment during the first 6 months on relapse or recurrence of depression. J Affect Disord 2011;132(1-2):121-129. DOI: http://dx.doi.org/10.1016/j.jad.2011.02.016. https://doi.org/10.1016/j.jad.2011.02.016
  14. Kim MG, Kim K. Factors affecting health care utilization in patient with lung cancer. Perspect Nurs Sci 2013;10(1):52-64.
  15. Lee CH, Hyun MK, Jang EJ, Lee NR, Kim K, Yim JJ. Inhaled corticosteroid use and risks of lung cancer and laryngeal cancer. Respir Med 2013;107(8):1222-1233. DOI: http://dx.doi.org/10.1016/j.rmed.2012.12.002. https://doi.org/10.1016/j.rmed.2012.12.002
  16. Lee S, Ryu JH, Kim H, Kim KH, Ahn HS, Hann HJ, et al. An assessment of survival among Korean elderly patients initiating dialysis: a national population-based study. PLoS One 2014;9(1):e86776. DOI: http://dx.doi.org/10.1371/journal.pone.0086776. https://doi.org/10.1371/journal.pone.0086776
  17. Shin DW, Cho J, Yang HK, Park JH, Lee H, Kim H, et al. Impact of continuity of care on mortality and health care costs: a nationwide cohort study in Korea. Ann Fam Med 2014;12(6):534-541. DOI: http://dx.doi.org/10.1370/afm.1685. https://doi.org/10.1370/afm.1685
  18. Kim DY, Lee KS. A study on the effects of percutaneous transluminal coronary angioplasty and pediatric heart surgery on the differences of risk-adjusted length of stay and in-hospital death for coronary artery bypass graft patients. Korean J Health Serv Manag 2014;8(4):47-55. DOI: http://dx.doi.org/10.12811/kshsm.2014.8.4.047. https://doi.org/10.12811/kshsm.2014.8.4.047
  19. Suh HS, Kang HY, Kim J, Shin E. Effect of health insurance type on health care utilization in patients with hypertension: a national health insurance database study in Korea. BMC Health Serv Res 2014;14(1):570. DOI: http://dx.doi.org/10.1186/s12913-014-0570-9. https://doi.org/10.1186/s12913-014-0570-9
  20. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40(5):373-383. DOI: http://dx.doi.org/10.1016/0021-9681(87)90171-8. https://doi.org/10.1016/0021-9681(87)90171-8
  21. Sundararajan V, Quan H, Halfon P, Fushimi K, Luthi JC, Burnand B, et al. Cross-national comparative performance of three versions of the ICD-10 Charlson index. Med Care 2007;45(12):1210-1215. DOI: http://dx.doi.org/10.1097/mlr.0b013e3181484347. https://doi.org/10.1097/MLR.0b013e3181484347
  22. Halfon P, Eggli Y, van Melle G, Chevalier J, Wasserfallen JB, Burnand B. Measuring potentially avoidable hospital readmissions. J Clin Epidemiol 2002;55(6):573-587. DOI: http://dx.doi.org/10.1016/s0895-4356(01)00521-2. https://doi.org/10.1016/S0895-4356(01)00521-2
  23. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol 2004;57(12):1288-1294. DOI: http://dx.doi.org/10.1016/j.jclinepi.2004.03.012. https://doi.org/10.1016/j.jclinepi.2004.03.012
  24. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 1992;45(6):613-619. DOI: http://dx.doi.org/10.1016/0895-4356(92)90133-8. https://doi.org/10.1016/0895-4356(92)90133-8
  25. Romano PS, Roos LL, Jollis JG. Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. J Clin Epidemiol 1993;46(10):1075-1079. DOI: http://dx.doi.org/10.1016/0895-4356(93)90103-8. https://doi.org/10.1016/0895-4356(93)90103-8
  26. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 2011;173(6):676-682. DOI: http://dx.doi.org/10.1093/aje/kwq433. https://doi.org/10.1093/aje/kwq433
  27. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care 1998;36(1):8-27. DOI: http://dx.doi.org/10.1097/00005650-199801000-00004. https://doi.org/10.1097/00005650-199801000-00004
  28. Dominick KL, Dudley TK, Coffman CJ, Bosworth HB. Comparison of three comorbidity measures for predicting health service use in patients with osteoarthritis. Arthritis Rheum 2005;53(5):666-672. DOI: http://dx.doi.org/10.1002/art.21440. https://doi.org/10.1002/art.21440
  29. Van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ. A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care 2009;47(6):626-633. DOI: http://dx.doi.org/10.1097/MLR.0b013e31819432e5. https://doi.org/10.1097/MLR.0b013e31819432e5
  30. Stukenborg GJ, Wagner DP, Connors AF Jr. Comparison of the performance of two comorbidity measures, with and without information from prior hospitalizations. Med Care 2001;39(7):727-739. DOI: http://dx.doi.org/10.1097/00005650-200107000-00009. https://doi.org/10.1097/00005650-200107000-00009
  31. Southern DA, Quan H, Ghali WA. Comparison of the Elixhauser and Charlson/Deyo methods of comorbidity measurement in administrative data. Med Care 2004;42(4):355-360. DOI: http://dx.doi.org/10.1097/01.mlr.0000118861.56848.ee. https://doi.org/10.1097/01.mlr.0000118861.56848.ee
  32. Kurichi JE, Stineman MG, Kwong PL, Bates BE, Reker DM. Assessing and using comorbidity measures in elderly veterans with lower extremity amputations. Gerontology 2007;53(5):255-259. DOI: http://dx.doi.org/10.1159/000101703. https://doi.org/10.1159/000101703
  33. Chu YT, Ng YY, Wu SC. Comparison of different comorbidity measures for use with administrative data in predicting short- and long-term mortality. BMC Health Serv Res 2010;10(1):140. DOI: http://dx.doi.org/10.1186/1472-6963-10-140. https://doi.org/10.1186/1472-6963-10-140
  34. Lieffers JR, Baracos VE, Winget M, Fassbender K. A comparison of Charlson and Elixhauser comorbidity measures to predict colorectal cancer survival using administrative health data. Cancer 2011;117(9):1957-1965. DOI: http://dx.doi.org/10.1002/cncr.25653. https://doi.org/10.1002/cncr.25653
  35. Mnatzaganian G, Ryan P, Norman PE, Hiller JE. Accuracy of hospital morbidity data and the performance of comorbidity scores as predictors of mortality. J Clin Epidemiol 2012;65(1):107-115. DOI: http://dx.doi.org/10.1016/j.jclinepi.2011.03.014. https://doi.org/10.1016/j.jclinepi.2011.03.014
  36. Sharabiani MT, Aylin P, Bottle A. Systematic review of comorbidity indices for administrative data. Med Care 2012;50(12):1109-1118. DOI: http://dx.doi.org/10.1097/MLR.0b013e31825f64d0. https://doi.org/10.1097/MLR.0b013e31825f64d0
  37. Austin PC, van Walraven C, Wodchis WP, Newman A, Anderson GM. Using the Johns Hopkins Aggregated Diagnosis Groups (ADGs) to predict mortality in a general adult population cohort in Ontario, Canada. Med Care 2011;49(10):932-939. DOI: http://dx.doi.org/10.1097/MLR.0b013e318215d5e2. https://doi.org/10.1097/MLR.0b013e318215d5e2
  38. Machnicki G, Pinsky B, Takemoto S, Balshaw R, Salvalaggio PR, Buchanan PM, et al. Predictive ability of pretransplant comorbidities to predict long-term graft loss and death. Am J Transplant 2009;9(3):494-505. DOI: http://dx.doi.org/10.1111/j.1600-6143.2008.02486.x. https://doi.org/10.1111/j.1600-6143.2008.02486.x
  39. Gagne JJ, Glynn RJ, Avorn J, Levin R, Schneeweiss S. A combined comorbidity score predicted mortality in elderly patients better than existing scores. J Clin Epidemiol 2011;64(7):749-759. DOI: http://dx.doi.org/10.1016/j.jclinepi.2010.10.004. https://doi.org/10.1016/j.jclinepi.2010.10.004
  40. Li P, Kim MM, Doshi JA. Comparison of the performance of the CMS Hierarchical Condition Category (CMS-HCC) risk adjuster with the Charlson and Elixhauser comorbidity measures in predicting mortality. BMC Health Serv Res 2010;10(1):245. DOI: http://dx.doi.org/10.1186/1472-6963-10-245. https://doi.org/10.1186/1472-6963-10-245
  41. Preen DB, Holman CD, Spilsbury K, Semmens JB, Brameld KJ. Length of comorbidity lookback period affected regression model performance of administrative health data. J Clin Epidemiol 2006;59(9):940-946. DOI: http://dx.doi.org/10.1016/j.jclinepi.2005.12.013. https://doi.org/10.1016/j.jclinepi.2005.12.013
  42. Zhang JX, Iwashyna TJ, Christakis NA. The performance of different lookback periods and sources of information for Charlson comorbidity adjustment in Medicare claims. Med Care 1999;37(11):1128-1139. DOI: http://dx.doi.org/10.1097/00005650-199911000-00005. https://doi.org/10.1097/00005650-199911000-00005
  43. Lee DS, Donovan L, Austin PC, Gong Y, Liu PP, Rouleau JL, et al. Comparison of coding of heart failure and comorbidities in administrative and clinical data for use in outcomes research. Med Care 2005;43(2):182-188. DOI: http://dx.doi.org/10.1097/00005650-200502000-00012. https://doi.org/10.1097/00005650-200502000-00012
  44. Wang PS, Walker A, Tsuang M, Orav EJ, Levin R, Avorn J. Strategies for improving comorbidity measures based on Medicare and Medicaid claims data. J Clin Epidemiol 2000;53(6):571-578. DOI: http://dx.doi.org/10.1016/s0895-4356(00)00222-5. https://doi.org/10.1016/S0895-4356(00)00222-5
  45. Chen JS, Roberts CL, Simpson JM, Ford JB. Use of hospitalisation history (lookback) to determine prevalence of chronic diseases: impact on modelling of risk factors for haemorrhage in pregnancy. BMC Med Res Methodol 2011;11(1):68. DOI: http://dx.doi.org/10.1186/1471-2288-11-68. https://doi.org/10.1186/1471-2288-11-68
  46. Dobbins TA, Creighton N, Currow DC, Young JM. Look back for the Charlson Index did not improve risk adjustment of cancer surgical outcomes. J Clin Epidemiol 2015;68(4):379-386. DOI: http://dx.doi.org/10.1016/j.jclinepi.2014.12.002. https://doi.org/10.1016/j.jclinepi.2014.12.002
  47. Health Insurance Review and Assessment Service. Health insurance claim data analysis manual for evidence-based health care. Wonju: Health Insurance Review and Assessment Service; 2015.
  48. Baldwin LM, Klabunde CN, Green P, Barlow W, Wright G. In search of the perfect comorbidity measure for use with administrative claims data: does it exist? Med Care 2006;44(8):745-753. DOI: http://dx.doi.org/10.1097/01.mlr.0000223475.70440.07. https://doi.org/10.1097/01.mlr.0000223475.70440.07
  49. Bang JH, Hwang SH, Lee EJ, Kim Y. The predictability of claim-data-based comorbidity-adjusted models could be improved by using medication data. BMC Med Inform Decis Mak 2013;13(1):128. DOI: http://dx.doi.org/10.1186/1472-6947-13-128. https://doi.org/10.1186/1472-6947-13-128
  50. Kil SR, Lee SI, Khang YH, Lee MS, Kim HJ, Kim SO, et al. Development and validation of comorbidity index in South Korea. Int J Qual Health Care 2012;24(4):391-402. DOI: http://dx.doi.org/10.1093/intqhc/mzs027. https://doi.org/10.1093/intqhc/mzs027