17-DMAG이 마우스 골격근에서 autophagy flux에 미치는 영향



Ju, Jeong-sun;Lee, Yoo-Hyun

  • 투고 : 2015.10.14
  • 심사 : 2016.02.14
  • 발행 : 2016.04.30


본 연구는 17-DMAG이 골격근에서 autophagy에 관여하는 가를 조사하기 위해, C2C12세포와 마우스 골격근에서 17-DMAG (Hsp90 억제제/Hsp72 활성제)을 처치하는 그룹과 autophagy 억제제(Bafilomycin 또는 colchicine)를 처치하는 그룹과 처치하지 않는 그룹을 동시에 두고 autophagy flux를 측정하였다. C2C12 배양세포에서 17-DMAG이 Hsp90 억제/hsp72 활성화시켰으며 Akt-mTOR 신호체계를 유의하게 감소시켰지만(p<0.05) autophagy marker 단백질인 LC3 II와 p62를 증가시키지 않았다. in vivo 모델의 경우 17-DMAG 처치가 배양세포에서 발견된 것처럼 Hsp90억제/hsp72를 활성화시켰고 Akt-mTOR 신호체계를 유의하게 감소시켰다(p<0.05). 반면 LC3 II와 p62 단백질 수준은 autophagy 억제제(colchicine) 처치 수준보다 더 높게 증가되었다. 이는 17-DMAG이 골격근에서 autophagy를 증가시키지만 C2C12 배양세포에서는 autophagy의 활성화가 제한적임을 암시한다. 현재 이러한 in vitro와 in vivo 모델에서의 차이는 불분명하다.


17-DMAG;autophagy;heat shock protein;Hsp72;skeletal muscle


  1. Bagatell, R., Paine-Murrieta, G.. D., Taylor, C. W., Pulcini, E. J., Akinaga, S., Benjamin, I. J. and Whitesell, L. 2000. Induction of heat shock factor1-dependnent stress response alters the cytotoxic activity of HSP90-binding agents. Clin. Cancer Res. 6, 3312-3320.
  2. Carra, S., Cripppa, V., Rusmini, P., Boncoraglio, A., Minoia, M., Giorgetti, E., Kampinga, H. H. and Poletti, A. 2012. Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog. Neurobiol. 97, 83-100. https://doi.org/10.1016/j.pneurobio.2011.09.009
  3. Carra, S., Brunsting, J. F., Lambert, H., Laudry, J. and Kampinga, H. H. 2009. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2alpha phosphorylation. J. Biol. Chem. 284, 5523-5532. https://doi.org/10.1074/jbc.M807440200
  4. Ching, J. K., Ju, J. S., Pittman, S. K., Margeta, M. and Weihl, C. C. 2013. Increased colchicine-induced muscle toxicity. Autophagy 12, 2115-2125.
  5. Criollo, A., Senovilla, L., Authier, H., Maiuri, M. C., Morselli, E., Vitale, I., Kepp, O., Tasdemir, E., Galluzzi, L., Shen, S., Tailer, M., Delahaye, N., Tesniere, A., De Stefano, D., Younes, A. B., Harper, F., Pierron, G., Lavandero, S., Zitvogel, L., Israel, A., Baud, V. and Kroemer, G. 2010. The IKK complex contributes to the induction of autophagy. EMBO J. 29, 619-631. https://doi.org/10.1038/emboj.2009.364
  6. Cuervo, A. M. and Wong, E. 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92-104. https://doi.org/10.1038/cr.2013.153
  7. Dokladny, K., Zuhl, M. N., Mandell, M., Bharttacharya, D., Schneider, S., Derectic, V. and Moseley, P. L. 2013. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J. Biol. Chem. 288, 14959-14972. https://doi.org/10.1074/jbc.M113.462408
  8. Ferat-Osorio, E., Sanchez-Anaya, A., Gutierrez-Mendoza, M., Bosco-Garate, I., Wong-Baeza, I., Pastelin-Palacios, R., Pedraza-Alva, G., Bonifaz, L. C., Cortes-Reynosa, P., PerezSalazar, E., Arriaga-Pizano, L., Lopez-Macias, C., Rosenstein, Y. and Isibasi, A. 2014. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. J. Inflamm. 11, 1476-1492.
  9. Goldberg, A. L. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899. https://doi.org/10.1038/nature02263
  10. Gusarova, V., Caplan, A. J., Brodsky, J. L. and Fisher, E. A. 2001. Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70. J. Biol. Chem. 276, 24891-24900. https://doi.org/10.1074/jbc.M100633200
  11. Hartl, F. U. and Hayer-Hartl, M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858. https://doi.org/10.1126/science.1068408
  12. Ju, J. S., Fuentealba, R. A., Miller, S. E., Jackson, E., Piwnica-Worms, D., Baloh, R. H. and Weihl, C. C. 2009. Valosin-containing protein(VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875-888. https://doi.org/10.1083/jcb.200908115
  13. Ju, J. S., Varadhachary, A. S., Miller, S. E. and Weihl, C. C. 2010. Quantitation of “autophagic flux” in mature skeletal muscle. Autophagy 6, 929-935. https://doi.org/10.4161/auto.6.7.12785
  14. Kim, D. S, Li, B., Rhew, K. Y, Oh, H. W, Lim, H. D, Lee, W., Chae, H. J. and Kim, H. R. 2012. The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts. Arch. Pharm. Res. 35, 1269-1278. https://doi.org/10.1007/s12272-012-0718-2
  15. Lu, A., Ran, R., Parmentier-Batteur, S., Nee, A. and Sharp, F. R. 2002. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J. Neurochem. 81, 355-364.
  16. Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A. and Cyr, D. M. 1999. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492-1505. https://doi.org/10.1093/emboj/18.6.1492
  17. Meley, D., Bauvy, C., Houben-Weerts, J. H. Dubbelhuis, P. F., Helmond, M. T., Codogno, P. and Meijer, A. J. 2006. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870-34879. https://doi.org/10.1074/jbc.M605488200
  18. Mizushima, N., Yoshimori, T. and Ohsumi, Y. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005
  19. Ogier-Denis, E., Pattingre, S., El Benna, J. and Codogno, P. 2000. Erk1/2-dependent phosphorylation of Gα-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J. Biol. Chem. 275, 39090-39095. https://doi.org/10.1074/jbc.M006198200
  20. Palacios, C., Lopez-Peres, A. I. and Lopez-Rivas, A. 2010. Down-regulation of RIP expression by 17-dimethylaminoethylamino-17-demethoxygeldanamycin promotes TRAIL-induced in breast tumor cells. Cancer Lett. 287, 207-215. https://doi.org/10.1016/j.canlet.2009.06.012
  21. Palacios, C., Martin-Perez, R., Lopez-Perez, A. I., Pandiella, A. and Lopez-Rivas, A. 2010. Autophagy inhibition sensitizes multiple myeolma cells to 17-dimethylaminoethylamino-17-demethoxygeldanamycin-induced apoptosis. Leuk. Res. 34, 1533-1538. https://doi.org/10.1016/j.leukres.2010.07.002
  22. Pattingre, S., Bauvy, C. and Codogno, P. 2003. Amono acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem. 278, 16667-16674. https://doi.org/10.1074/jbc.M210998200
  23. Qin, L., Wang, Z., Tao, L. and Wang, Y. 2010. ER stress negatively regulates Akt/TSC/mTOR pathway to enhance autophagy. Autophagy 6, 239-247. https://doi.org/10.4161/auto.6.2.11062
  24. Ren, Y., Huang, F., Liu, Y., Yang, Y., Jiang, Q. and Xu, C. 2009. Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cells. BMB Rep. 42, 599-604. https://doi.org/10.5483/BMBRep.2009.42.9.599
  25. Riedel, M., Goldbau, O., Schwartz, L., Schmitt, S. and Richter-Landsberg, C. 2010. 17-AAG induces cytoplasmic α-synuclein aggregate clearnce by induction of autophagy. Plos One 5, e8753. https://doi.org/10.1371/journal.pone.0008753
  26. Rubinsztein, D. C., Codogno, P. and Levine, B. 2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709-730. https://doi.org/10.1038/nrd3802
  27. Rubinsztein, D. C., Cuervo, A. M., Rauikuma, B., Sarkar, S., Korolchuk, V., Kaushik, S. and Klionsky, D. J. 2009. In search of an “autophagomometer”. Autophagy 5, 585-589. https://doi.org/10.4161/auto.5.5.8823
  28. Ryter, S. W. and Choi, A. M. 2013. Autophagy: An integral component of the mammalian stress response. J. Biochem. Pharmacol. Res. 1, 176-188.
  29. Sato, S., Fujita, N. and Tsurun, T. 2000. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97, 10832-10837. https://doi.org/10.1073/pnas.170276797
  30. Senf, S. M. 2013. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol. 4, 330.
  31. Senf, S. M., Dodd, S. L., McClung, J. M. and Judge, A. R. 2008. Hsp70 overexpression inhibits NFkB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J. 22, 3836-3845. https://doi.org/10.1096/fj.08-110163
  32. Soti, C., Nagy, E., Giricz, A., Vigh, L., Csermely, P. and Ferdinandy, P. 2005. Heat shock protein s as emerging therapeutic targets. Br. J. Pharmacol. 146, 769-780. https://doi.org/10.1038/sj.bjp.0706396
  33. Vos, M. J., Zijlstra, M. P., Kanon, B., Van Waarde-Verhagen, M. A., Brunt, E. R., Oosterveld-Hut, H. M., Carra, S., Sibon, O. C. and Kampinga, H. H. 2010. HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum. Mol. Genet. 19, 4677-4693. https://doi.org/10.1093/hmg/ddq398
  34. Wang, A. M., Morishima, Y., Clapp, K. M., Peng, H. M., Pratt, W. B., Gestwicki, J. E., Osawa, Y. and Lieberman, A. P. 2010. Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J. Biol Chem. 285, 15714-15723. https://doi.org/10.1074/jbc.M109.098806
  35. Yang, J., Carra, S., Zhu, W. G. and Kampinga, H. H. 2013. The regulation of the autophagic network and its implications for human disease, Int. J. Biol. Sci. 9, 1121-1133. https://doi.org/10.7150/ijbs.6666
  36. Yang, Y., Janich, S., Cohn, J. A. and Wilson, J. M. 1993. The common variant of cyctic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90, 9480-9484. https://doi.org/10.1073/pnas.90.20.9480
  37. Zhao, J , Brault J. J., Schild A., Cao, P., Sandri, M., Schiaffino, S, Lecker, S. H. and Goldberg, A. L. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472-483. https://doi.org/10.1016/j.cmet.2007.11.004