토착 남세균 림노트릭스 속 KNUA012 균주의 바이오연료 원료로서의 특성 연구

DOI QR코드

DOI QR Code

홍지원;조승우;김오홍;정미랑;김현;박경목;이경인;윤호성
Hong, Ji Won;Jo, Seung-Woo;Kim, Oh Hong;Jeong, Mi Rang;Kim, Hyeon;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung

  • 투고 : 2015.12.24
  • 심사 : 2016.02.04
  • 발행 : 2016.04.30

초록

사상체 토착 남세균을 경상남도 합천군 합천호의 수화시료로부터 무균적으로 분리하였으며, 형태적·분자적 동정 결과 림노트릭스 속에 속하는 것으로 밝혀졌다. 따라서, 본 남세균 균주는 림노트릭스 속 KNUA012 균주로 명명하였으며, 분리균주의 최적생장 온도는 섭씨 25도였다. 지질성분 분석 결과, 에스테르 교환반응을 거치지 않고 직접 연료로 사용할 수 있는 펜타데칸(C15H32)과 헵타데칸(C17H36)과 같은 알칸들이 본 균주에 의해 광독립 영양적으로 생합성 된다는 것이 밝혀졌다. 또한 알칸 생합성에 관여하는 유전자들이 본 남세균 내에 존재하는 것을 발견하였다. 일반적인 미세조류 바이오디젤 구성성분으로 알려진 미리스트올레산(C14:1), 팔미트산(C16:0) 및 팔미톨레산(C16:1) 역시 KNUA012 균주에 의해 주요 지방산 성분으로서 생산되는 것으로 확인되었다. 근사분석 결과 KNUA012 균주의 휘발성물질 함량은 86.0%였으며, 원소분석 결과 고위발열량은 19.8 MJ kg−1으로 나타났다. 또한, 본 분리균주는 고부가가치 항산화물질로 알려져 있는 피코시아닌을 광독립영양적으로 21.4 mg g−1의 농도로 생산할 수 있는 것을 확인하였다. 따라서, 본 연구결과는 KNUA012 균주가 미세조류 기반 바이오연료와 바이오매스 원료의 경제적인 생산에 있어 이상적인 자원이 될 수 있음을 제시하였다.

키워드

Alkane-producing genes;biofuel;cyanobacteria;phycocyanin;potential feedstock

참고문헌

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Bi, Z. and He, B. B. 2013. Characterization of microalgae for the purpose of biofuel production. Biol. Eng. Trans. 56, 1529-1539.
  3. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  4. Coates, R. C., Podell, S., Korobeynikov, A., Lapidus, A., Pevzner, P., Sherman, D. H., Allen, E. E., Gerwick, L. and Gerwick, W. H. 2014. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9, e85140. https://doi.org/10.1371/journal.pone.0085140
  5. Dassey, A. J., Hall, S. G. and Theegala, C. S. 2014. An analysis of energy consumption for algal biodiesel production: Comparing the literature with current estimates. Algal Res. 4, 89-95. https://doi.org/10.1016/j.algal.2013.12.006
  6. Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification method. Prog. Energy Combust. Sci. 31, 466-487. https://doi.org/10.1016/j.pecs.2005.09.001
  7. Dismukes, G. C., Carrieri, D., Bennette, N., Ananyev, G. M. and Posewitz, M. C. 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235-240. https://doi.org/10.1016/j.copbio.2008.05.007
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  9. Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191-198. https://doi.org/10.1016/j.aca.2005.01.041
  10. Fu, W. J., Chi, Z., Ma, Z. C., Zhou, H. X., Liu, G. L., Lee, C. F. and Chi, Z. M. 2015. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. App. Microbiol. Biotechnol. 99, 7481-7494. https://doi.org/10.1007/s00253-015-6840-6
  11. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  12. Huntley, M. E. and Redalje, D. G. 2007. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation Adapt. Strateg. Glob. Chang. 12, 573-608. https://doi.org/10.1007/s11027-006-7304-1
  13. Johnson, M. B. and Wen, Z. 2009. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energ. Fuel 23, 5179-5183. https://doi.org/10.1021/ef900704h
  14. Knothe, G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36, 364-373. https://doi.org/10.1016/j.pecs.2009.11.004
  15. Lardon, L., Helias, A., Sialve, B, Steyer, J. P. and Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43, 6475-6481. https://doi.org/10.1021/es900705j
  16. Li, Y., Horsman, M., Wu, N., Lan, C. Q. and Dubois-Calero, N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24, 815-820.
  17. Meher, L. C., Vidya Sagar, D. and Naik, S. N. 2006. Technical aspects of biodiesel production by transesterification-a review. Renew. Sust. Energ. Rev. 10, 248-268. https://doi.org/10.1016/j.rser.2004.09.002
  18. Nagaraj, S., Arulmurugan, P., Rajaram, M. G., Karuppasamy, K., Jayappriyan, K. R., Sundararaj, R., Vijayanand, N. and Rengasamy, R., 2012. Hepatoprotective and antioxidative effects of C-phycocyanin from Arthrospira maxima SAG 25780 in CCl 4-induced hepatic damage rats. Biomed. Prev. Nutr. 2, 81-85. https://doi.org/10.1016/j.bionut.2011.12.001
  19. Neilan, B. A., Jacobs, D. and Goodman, A. E. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61, 3875-3883.
  20. Nübel, U., Garcia-Pichel, F. and Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327-3332.
  21. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
  22. Ross, A. B., Jones, J. M., Kubacki, M. L. and Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermo-chemical behaviour. Bioresour. Technol. 99, 6494-6504. https://doi.org/10.1016/j.biortech.2007.11.036
  23. Rudi, K., Skulberg, O. M. and Jakobsen, K. S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180, 3453-3461.
  24. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. and Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8
  25. Schirmer, A., Rude, M. A., Li, X., Popova, E. and del Cardayre, S. B. 2010. Microbial biosynthesis of alkanes. Science 329, 559-562. https://doi.org/10.1126/science.1187936
  26. Shakeel, T., Fatma, Z., Fatma, T. and Yazdani, S. S. 2015. Heterogeneity of alkane chain length in freshwater and marine cyanobacteria. Front. Bioeng. Biotechnol. 3, 34.
  27. Shih, C. M., Cheng, S. N., Wong, C. S., Kuo, Y. L. and Chou, T. C. 2009. Antiinflammatory and antihyperalgesic activity of C-phycocyanin. Anesth. Analg. 108, 1303-1310. https://doi.org/10.1213/ane.0b013e318193e919
  28. Silveira, S. T., Burkert, J. F. M., Costa, J. A. V., Burkert, C. A. V. and Kalil, S. J. 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresour. Technol. 98, 1629-1634. https://doi.org/10.1016/j.biortech.2006.05.050
  29. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  30. Taton, A., Grubisic, S., Brambilla, E., De Wit, R. and Wilmotte, A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69, 5157-5169. https://doi.org/10.1128/AEM.69.9.5157-5169.2003
  31. Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. and Leunissen, J. A. M. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, 71-74.
  32. Valentine, D. L. and Reddy, C. M. 2015. Latent hydrocarbons from cyanobacteria. Proc. Natl. Acad. Sci. USA 112, 13434-13435. https://doi.org/10.1073/pnas.1518485112
  33. Wang, W., Liu, X. and Lu, X. 2013. Engineering cyanobacteria to improve photo-synthetic production of alka(e)nes. Biotechnol. Biofuels 6, 69. https://doi.org/10.1186/1754-6834-6-69
  34. Yoshida, S., Takahashi, M., Ikeda, A., Fukuda, H., Kitazaki, C. and Asayama, M. 2015. Overproduction and easy recovery of biofuels from engineered cyanobacteria, autolyzing multicellular cells. J. Biochem. 157, 519-527. https://doi.org/10.1093/jb/mvv011