Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating

플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동

  • Received : 2016.03.08
  • Accepted : 2016.04.05
  • Published : 2016.05.27


In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.


$Y_2O_3$;plasma spraying;powder melting;inter-splat pore;scratch resistance


  1. A. J. Van Roosmalen, J. A. G. Baggerman and S. J. H. Brader, Dry Etching for VLSI, p.99, Plenum Press, New York (1991).
  2. R. Doering and Y. Nishi, Handbook of Semiconductor Manufacturing Technology, p.21, CRC Press, New York (2008).
  3. D. M. Kim, K. B. Kim, S. Y. Yoon, Y. S. Oh, H. T. Kim and S. M. Lee, J. Ceram. Soc. Jpn., 117, 863 (2009).
  4. M. Kazuhiro, T. Norihatu and S. Koichi, J. Vac. Sci. Technol. A, 27, 831 (2009).
  5. R. Ramos, G. Cunge, B. Pelissier and O. Joubert, Plasma Sources Sci. Technol., 16, 711 (2007).
  6. D. M. Kim, S. Y. Yoon, K. B. Kim, H. S. Kim, Y. S. Oh and S. M. Lee, J. Korean Ceram. Soc. (in Korean), 45, 707 (2008).
  7. D. M. Kim, Y. S. Oh, S. W. Kim, H. T. Kim, D. S. Lim and S. M. Lee, Thin Solid Films, 519, 6698 (2011).
  8. S. Beauvais, V. Guipont, F. Borit, M. Jeandin, M. Espanol, K. A. Khor, A. Robisson and R. Saenger, Surf. Coat. Technol., 183, 204 (2004).
  9. M. Tului, G. Marino and T. Valente, Surf. Coat. Technol., 201, 2103 (2006).
  10. H. K. Seok, E. Y. Choi, P. R. Cha, M. C. Son and B. Choi, Surf. Coat. Technol., 205, 3341 (2011).
  11. J. Kitamura, H. Ibe, F. Yuasa and H. Mizuno, J. Therm. Spray Soc., 17, 878 (2008).
  12. I. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara and K. Uematsu, J. Am. Ceram. Soc., 90, 2327 (2007).
  13. K. Y. Choi, Y. S. Oh, S. Kim and S. M. Lee, Ceram. Int., 39, 1209 (2013).
  14. D. H. Riu, S. W. Lee, Y. K. Jeong and S. C. Choi, Key Eng. Mater., 264-8, 601 (2004).
  15. T. Gougousi and Z. Chen, Thin Solid Films. 516, 6197 (2008).
  16. T. Watanabe, M. Kondo, T. Nagasaka, and A. Sagara, J. Plasma Fusion Res., 9, 342 (2010).
  17. M. Berkowski, P. Bowen, T. Liechti and H. J. Scheel, J. Am. Ceram. Soc., 75, 1005 (1992).
  18. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, p.28-50, John Wiley & Sons, New York (1995).
  19. K. H. Baik, P. S. Grant and B. Cantor, Acta Mater., 52, 199 (2004).
  20. P. Fauchais, J. Phys. D: Applied Physics, 37, R86 (2004).
  21. C. Li, C. Li and M. Wang, Surf. Coat. Technol., 198, 278 (2005).
  22. H. Y. Lee and K. H. Baik, Met. Mater. Int., 15, 783 (2009).
  23. W. S. So and K. H. Baik, Korean J. Mater. Res. (in Korean), 21, 106 (2011).


Grant : BK21플러스

Supported by : 충남대학교