Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal

열처리된 친수성 카본 페이퍼 전극의 전기 물 분해 특성

Yoo, Il-Han;Seo, Hyungtak

  • Received : 2016.02.25
  • Accepted : 2016.03.27
  • Published : 2016.05.27


Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.


carbon paper;water electrolysis;carbon electrode;oxygen evolution reaction


  1. X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503 (2010).
  2. H. Gu, Z. Wang and Y. Hu, Sensors, 12, 5517 (2012).
  3. B. Rausch, M. D. Symes and L. Cronin, J. Am. Chem. Soc., 135, 13656 (2013).
  4. M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and H. Dai, Nat. Commun., 5 4695 (2014).
  5. G. W. Crabtree, M. S. Dresselhaus and M. V. Buchanan, Phys. Today, 57, 39 (2004).
  6. I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K.-i. Katsura, Y. Katayama, S. Asoh and S. Ohta, Nat. Med., 13, 688 (2007).
  7. S. Ohta, Pharmacol. Therapeut., 144, 1-11 (2014).
  8. Z. D. Wei, M. B. Ji, S. G. Chen, Y. Liu, C. X. Sun, G. Z. Yin, P. K. Shen and S. H. Chan, Electrochim. Acta, 52, 3323 (2007).
  9. P. K. Dubey, A. S. K. Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan and O. N. Srivastava, Int. J. Hydrogen Energy, 35, 3945 (2010).
  10. P. P. Prosini, A. Pozio, S. Botti and R. Ciardi, J. Power Sourc., 118, 265 (2003).
  11. H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan and J. M. Tour, ACS Nano, 8, 10837 (2014).
  12. S. C. Barton, Y. Sun, B. Chandra, S. White and J. Hone, Electrochem. Solid-State Lett., 10, B96 (2007).
  13. A. Tamayol, F. McGregor and M. Bahrami, J. Power Sourc., 204, 94 (2012).
  14. D. Reyter, D. Belanger and L. Roue, Water Res., 44, 1918 (2010).
  15. K. J. Kim, Y.-J. Kim, J.-H. Kim and M.-S. Park, Mater. Chem. Phys., 131, 547 (2011).
  16. L. Dobiasova, V. Stary, P. Glogar and V. Valvoda, Carbon, 37, 421 (1999).


Supported by : National Research Foundation (NRF)