DOI QR코드

DOI QR Code

A Modular Bi-Directional Power Electronic Transformer

Gao, Zhigang;Fan, Hui

  • Received : 2015.05.07
  • Accepted : 2015.09.16
  • Published : 2016.03.20

Abstract

This paper presents a topology for a modular power electronic transformer (PET) and a control scheme. The proposed PET consists of a cascaded H-Bridge rectifier on the primary side, a high-frequency DC/DC conversion cell in the center, and a cascaded H-Bridge inverter on the secondary side. It is practical to use PETs in power systems to reduce the cost, weight and size. A detailed analysis of the structure is carried out by using equivalent circuit. An algorithm to control the voltages of each capacitor and to maintain the power flow in the PET is established. The merits are analyzed and verified in theory, including the bi-directional power flow, variable voltage/frequency and high power factor on the primary side. The experimental results validated the propose structure and algorithm.

Keywords

Bi-directional;Cascaded H-Bridge (CHB);Multilevel converter;Power Electronic Transformer (PET);Pulse Width Modulation (PWM)

References

  1. C. Chakraborty, H. Iu, and D. Lu, “Power converters, control, and energy management for distributed generation,” IEEE Trans. Ind. Electron., Vol. 62, No. 7, pp. 4466-4470, Jul. 2015. https://doi.org/10.1109/TIE.2015.2412914
  2. S. Alepuz, A. Calle, S. B. Monge, S. Kouro, and B. Wu, “Use of stored energy in PMSG rotor inertia for low-voltage ride-through in back-to-back NPC converter-based wind power systems,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1787-1796, May 2013. https://doi.org/10.1109/TIE.2012.2190954
  3. S. Mehraeen, S. Jagannathan, and M. L. Crow, “Novel dynamic representation and control of power systems with FACTS devices,” IEEE Trans. Power Syst., Vol. 25, No. 3, pp. 1542-1554, Aug. 2010. https://doi.org/10.1109/TPWRS.2009.2037634
  4. J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, C. Ramon, P. Guisado, M. A. M. Prats, J. I. Leon, and N. M. Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1002-1016, Jun. 2006. https://doi.org/10.1109/TIE.2006.878356
  5. N. Johansson, L. Angquist, and H.-P. Nee, “An adaptive controller for power system stability improvement and power flow control by means of a thyristor switched series capacitor (TSSC),” IEEE Trans. Power Syst., Vol. 25, No. 1, pp. 381-391, Feb. 2010. https://doi.org/10.1109/TPWRS.2009.2036484
  6. H. Fan and H. Li, “High-frequency transformer isolated bidirectional DC–DC converter modules with high efficiency over wide load range for 20 kVA solid-state transformer,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3599-3608, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2160652
  7. G. Franceschini, E. Lorenzani, and G. Buticchi, “Saturation compensation strategy for grid connected converters based on line frequency transformers,” IEEE Trans. Energy Convers., Vol. 27, No. 2, pp. 229-237, Jun. 2012. https://doi.org/10.1109/TEC.2012.2184113
  8. S. Roy and L. Umanand, “Integrated magnetics-based multisource quality ac power supply,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1350-1358, Apr. 2011. https://doi.org/10.1109/TIE.2010.2049712
  9. P. K. Jain, J. R. Espinoza, and H. Jin, “Performance of a single-stage UPS system for single-phase trapezoidal-shaped ac-voltage supplies,” IEEE Trans. Power Electron., Vol. 13, No. 5, pp. 912-923, Sep. 1998. https://doi.org/10.1109/63.712309
  10. T. Zhao, G. Wang, S. Bhattacharya, and A. Q. Huang, “Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1523-1532, Apr. 2013. https://doi.org/10.1109/TPEL.2012.2216549
  11. L. Jia and S. K. Mazumder, “A loss-mitigating scheme for dc/pulsating-dc converter of a high-frequency-link system,” IEEE Trans. Ind. Electron, Vol. 59, No. 12, pp. 4537-4544, Dec. 2012. https://doi.org/10.1109/TIE.2011.2181130
  12. J. S. Lai and D. J. Nelson, “Energy management power converters in hybrid electric and fuel cell vehicles,” Proc. IEEE., Vol. 95, No. 4, pp. 766-777, Apr. 2007. https://doi.org/10.1109/JPROC.2006.890122
  13. H. S. h. Chung, W. L. Cheung, and K. S. Tang, “A ZCS bidirectional flyback dc/dc converter,” IEEE Trans. Power Electron., Vol. 19, No. 6, pp. 1426-1434, Nov. 2004. https://doi.org/10.1109/TPEL.2004.836643
  14. J. Biela, M. Schweizer, S. Waffler, and J. W. Kolar, “SiC versus Si-Evaluation of potentials for performance improvement of inverter and dc-dc converter systems by SiC power semiconductors,” IEEE Trans. Ind. Electron., Vol. 58, No. 7, pp. 2872–2882, Jul. 2011. https://doi.org/10.1109/TIE.2010.2072896
  15. D. M. Bellur and M. K. Kazimierczuk, “Isolated two-transistor zeta converter with reduced transistor voltage,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 58, No. 1, pp. 41-45, Jan. 2011. https://doi.org/10.1109/TCSII.2010.2092829
  16. H. Xiao and S. Xie, “A ZVS bidirectional dc-dc converter with phase-shift pulse PWM control scheme,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 813-823, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915188
  17. S. Inoue and H. Akagi, "A bidirectional isolated dc-dc converter as a core circuit of the next-generation medium-voltage power conversion system," in 37th IEEE Power Electronics Specialists Conference(PESC), pp. 1-7, Mar. Jun. 2006.
  18. C. Mi, H. Bai, C. Wang, and S. Gargies, “Operation, design and control of dual H-bridge-based isolated bidirectional dc-dc converter,” IET Power Electron. , Vol. 1, No. 4, pp. 507–517, Dec. 2008. https://doi.org/10.1049/iet-pel:20080004
  19. G. G. Oggier, M. Ordonez, J. M. Galvez, and F. Luchino, “Fast transient boundary control and steady-state operation of the dual active bridge converter using the natural switching surface,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 946–957, Feb. 2014. https://doi.org/10.1109/TPEL.2013.2256150
  20. H. Bai and C. Mi, “Eliminate reactive power and increase system effi-ciency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control,” IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2905–2914, Nov. 2008. https://doi.org/10.1109/TPEL.2008.2005103
  21. M. Sabahi, S. H. Hosseini, M. B. B. Sharifian, A. Y. Goharrizi, and G. B. Gharehpetian, “A three-phase dimmable lighting system using a bidirectional power electronic transformer,” IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 830-837, Mar. 2009. https://doi.org/10.1109/TPEL.2008.2010344
  22. Y. Xie, J. Sun, and J. S. Freudenberg, “Power flow characterization of a bidirectional galvanically isolated high-power dc-dc converter over a wide operating range,” IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 54–66, Jan. 2010. https://doi.org/10.1109/TPEL.2009.2024151
  23. H. Bai, Z. Nie, and C. Mi, “Experimental comparision of traditional phase-shift,dual-phase-shift, and model-based control of isolated bidi-rectional dc-dc converters,” IEEE Trans. Power Electron. , Vol. 25, No. 6, pp. 1444–1449, Jun. 2010. https://doi.org/10.1109/TPEL.2009.2039648
  24. M. Sabahi, A. Y. Goharrizi, S. H. Hosseini, M. B. B. Sharifian, and G. B. Gharehpetian, “Flexible power electronic transformer,” IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 2159-2169, Aug. 2010. https://doi.org/10.1109/TPEL.2010.2040840
  25. D. Dujic, F. Kieferndorf, F. Canales, and U. Drofenik, "Power electronic traction transformer technology - an overview," in 7th International Power Electronics and Motion Control Conference(IPEMC), Vol. 1, pp. 636-642, Jun. 2012.
  26. M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, “A survey on cascaded multilevel inverters,” IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2197-2207, Jul. 2010. https://doi.org/10.1109/TIE.2009.2030767
  27. J. D. Barros and J. F. Silva, “Multilevel optimal predictive dynamic voltage restorer,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2747-2760, Aug. 2010. https://doi.org/10.1109/TIE.2009.2034172
  28. S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. Wu, J. Rodriguez, M. A. Perez, and J. I. Leon. “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2553-2580, Aug. 2010. https://doi.org/10.1109/TIE.2010.2049719
  29. F. H. Khan, L. M. Tolbert, and W. E. Webb, “Hybrid electric vehicle power management solutions based on isolated and nonisolated configurations of multilevel modular capacitor-clamped converter,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3079-3095, Aug. 2009. https://doi.org/10.1109/TIE.2009.2022074
  30. Z. Du, L. M. Tolbert, and J. N. Chiasson, “Active harmonic elimination for multilevel converters,” IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 459-469, Mar. 2006. https://doi.org/10.1109/TPEL.2005.869757
  31. C. R. Baier, J. R. Espinoza, J. A. Munoz, L. A. Moran, and P. E. Melin, “A high-performance multicell topology based on single-phase power cells for three-phase systems operating under unbalanced AC mains and asymmetrical loads,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2730-2738, Aug. 2010. https://doi.org/10.1109/TIE.2009.2036637
  32. H. Akagi, “Classification, terminology, and application of the modular multilevel cascade converter (MMCC),” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3119-3130, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2143431
  33. F. Khoucha, S. M. Lagoun, K. Marouani, A. Kheloui, and M. E. H. Benbouzid, “Hybrid cascaded H-bridge multilevel-inverter induction-motor-drive direct torque control for automotive applications,” IEEE Trans. Ind. Electron., Vol. 57, No. 3, pp. 892-899, Mar. 2010. https://doi.org/10.1109/TIE.2009.2037105
  34. S. Lu and K. A. Corzine, “Advanced control and analysis of cascaded multilevel converters based on P-Q compensation,” IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1242-1252, Jul. 2007. https://doi.org/10.1109/TPEL.2007.900471
  35. N. Hatti, K. Hasegawa, and H. Akagi, “A 6.6-kV transformerless motor drive using a five-level diode-clamped PWM inverter for energy savings of pumps and blowers,” IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 796-803, Mar. 2009. https://doi.org/10.1109/TPEL.2008.2008995
  36. J. I. Leon, S. Kouro, S. Vazquez, R. Portillo, L. G. Franquelo, J. M. Carrasco, and J. Rodriguez, “Multidimensional modulation technique for cascaded multilevel converters,” IEEE Trans. Ind. Electron., Vol. 58, No. 2, pp. 412-420, Feb. 2011. https://doi.org/10.1109/TIE.2010.2048833
  37. Y. Cheng, C. Qian, M. L. Crow, S. Pekarek, and S. Atcitty, “A comparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage,” IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1512-1521, Oct. 2006. https://doi.org/10.1109/TIE.2006.882022
  38. D. Krug, S. Bernet, S. S. Frazel, K. Jalili, and M. Malinowski, “Comparison of 2.3-kV medium-voltage multilevel converters for industrial medium-voltage drives,” IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 2979-2992, Dec. 2007. https://doi.org/10.1109/TIE.2007.906997
  39. P. Flores, J. Dixon, M. Ortuzar, R. Carmi, P. Barriuso, and L. Moran, “Static var compensator and active power filter with power injection capability, using 27-level inverters and photovoltaic cells,” IEEE Trans. Ind. Electron., Vol. 56, No. 1, pp. 130-138, Jan. 2009. https://doi.org/10.1109/TIE.2008.927229
  40. R. H. Baker and L. H. Bannister. "Electric power converter," U.S. Patent 3867643, Feb. 1975.
  41. J. Rodriguez, L. Moran, J. Pontt, P. Correa, and C. Silva, “A high-performance vector control of an 11-level inverter,” IEEE Trans. Ind. Electron., Vol. 50, No. 1, pp. 80-85, Feb. 2003. https://doi.org/10.1109/TIE.2002.804975
  42. J. S. Lai and F. Peng, “Multilevel converters—a new breed of power converter,” IEEE Trans. Ind. Appl.., Vol. 32, No. 3, pp. 509–517, May/Jun. 1996. https://doi.org/10.1109/28.502161
  43. X. Kou, K. A. Corzine, and M. W. Wielebski, “Overdistention operation of cascaded multilevel inverters,” IEEE Trans. Ind. Appl., Vol. 42, No. 3, pp. 817-824, May/Jun. 2006. https://doi.org/10.1109/TIA.2006.873654
  44. J. Rodriguez, L. Moran, J. Pontt, J. L. Hernandez, L. Silva, C. Silva, and P. Lezana, “High-voltage multilevel converter with regeneration capability,” IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 839-846, Aug. 2002. https://doi.org/10.1109/TIE.2002.801238
  45. Z. Du, B. Ozpineci, L. M. Tolbert, and J. N. Chiasson, “DC-AC cascaded h-bridge multilevel boost inverter with no inductors for electric/hybrid electric vehicle applications,” IEEE Trans. Ind. Appl., Vol. 45, No. 3, pp. 963-970, May/Jun. 2009. https://doi.org/10.1109/TIA.2009.2018978
  46. P. Lezana and G. Ortiz, “Extended operation of cascade multicell converters under fault condition,” IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2697-2703, Jul. 2009. https://doi.org/10.1109/TIE.2009.2019771
  47. A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, “A hybrid cascade converter topology with series-connected symmetrical and asymmetrical diode-clamped H-bridge cells,” IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 51-65, Jan. 2011. https://doi.org/10.1109/TPEL.2009.2031115
  48. P. Lezana, J. Rodriguez, and D. A. Oyarzun, “Cascaded multilevel inverter with regeneration capability and reduced number of switches,” IEEE Trans. Ind. Electron., Vol. 55, No. 3, pp. 1059-1066, Mar. 2008. https://doi.org/10.1109/TIE.2008.917095
  49. A. Dell'Aquila, M. Liserre, V. G. Monopoli, and C. Cecati, "Design of a back-to-back multilevel induction motor drive for traction systems," in IEEE 34th Annual Power Electronics Specialist Conference, Vol. 4, pp. 1764-1769, Jun. 2003.
  50. S. Vazquez, J. I. Leon, J. M. Carrasco, L. G. Franquelo, E. Galvan, M. Reyes, J. A. Sanchez, and E. Dominguez, “Analysis of the power balance in the cells of a multilevel cascaded H-bridge converter,” IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2287-2296, Jul. 2010. https://doi.org/10.1109/TIE.2009.2034679
  51. M. Hagiwara, K. Nishimura, and H. Akagi, “A medium-voltage motor drive with a modular multilevel PWM inverter,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1786-1799, Jul. 2010. https://doi.org/10.1109/TPEL.2010.2042303
  52. Y. Hinago and H. Koizumi, “A single-phase multilevel inverter using switched series/parallel DC voltage sources,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2643-2650, Aug. 2010. https://doi.org/10.1109/TIE.2009.2030204
  53. H. AKagi and R. Kitada, “Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters,” IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2457-2464, Sep. 2011. https://doi.org/10.1109/TPEL.2011.2107752
  54. J. Shi, W. Gou, H. Yuan, T. Zhao, and A. Q. Huang, “Research on voltage and power balance control for cascaded modular solid-state transformer,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1154-1166, Apr. 2011. https://doi.org/10.1109/TPEL.2011.2106803
  55. S. V. Araujo, P. Zacharias, and R. Mallwitz, “Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems,” IEEE Trans. Ind. Electron., Vol. 57, No. 9, pp. 3118-3128, Sep. 2010. https://doi.org/10.1109/TIE.2009.2037654
  56. E. Villanueva, P. Correa, J. Rodriguez, and M. Pacas, “Control of a single-phase cascaded H-bridge multilevel inverter for grid-connected photovoltaic systems,” IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4399-4406, Nov. 2009. https://doi.org/10.1109/TIE.2009.2029579
  57. S. Inoue and H. Akagi, “A bidirectional DC-DC converter for an energy storage system with galvanic isolation,” IEEE Trans. Power Electron., Vol. 22, No. 6, pp. 2299-2306, Nov. 2007. https://doi.org/10.1109/TPEL.2007.909248
  58. T. Jimichi, H. Fujita, and H. Akagi, “A dynamic voltage restorer equipped with a high-frequency isolated DC-DC converter,” IEEE Trans. Ind. Appl., Vol. 47, No. 1, pp.169-175, Jan./Feb. 2011. https://doi.org/10.1109/TIA.2010.2091374
  59. G. Shen, X. Zhu, J. M. Zhang, and D. Xu, “A new feedback method for PR current control of LCL-filter-based grid-connected inverter,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2033-2041, Jun. 2010. https://doi.org/10.1109/TIE.2010.2040552
  60. A. G. Yepes, F. D. Freijedo, O. Lopez, and J. D. Gandoy, “Analysis and design of resonant current controllers for voltage-source converters by means of nyquist diagrams and sensitivity function,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5231-5250, Nov. 2011. https://doi.org/10.1109/TIE.2011.2126535