DOI QR코드

DOI QR Code

A High-Efficiency High Step-Up Interleaved Converter with a Voltage Multiplier for Electric Vehicle Power Management Applications

  • Tseng, Kuo-Ching ;
  • Chen, Chun-Tse ;
  • Cheng, Chun-An
  • Received : 2015.07.16
  • Accepted : 2015.10.08
  • Published : 2016.03.20

Abstract

This paper proposes a novel high-efficiency high-step-up interleaved converter with a voltage multiplier, which is suitable for electric vehicle power management applications. The proposed interleaved converter is capable of achieving high step-up conversion by employing a voltage-multiplier circuit. The proposed converter lowers the input-current ripple, which can extend the input source's lifetime, and reduces the voltage stress on the main switches. Hence, large voltage spikes across the main switches are alleviated and the efficiency is improved. Finally, a prototype circuit with an input voltage of 24 V, an output voltage of 380 V, and an output rated power of 1 kW is implemented and tested to demonstrate the functionality of the proposed converter. Moreover, satisfying experimental results are obtained and discussed in this paper. The measured full-load efficiency is 95.2%, and the highest measured efficiency of the proposed converter is 96.3%.

Keywords

High step-up conversion;Interleaved boost converter

References

  1. H. Tao, J. L. Duarte, and M. A.M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 3012-3021, Aug. 2008. https://doi.org/10.1109/TIE.2008.918472
  2. J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: Operation and modeling,” IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2752-2758, Jul. 2008. https://doi.org/10.1109/TIE.2008.920583
  3. Y. Xiong, X. Cheng, Z. J. Shen, C. Mi, H. Wu, and V. K. Garg, “Prognostic and warning system for power-electronic modules in electric, hybrid electric, and fuel-cell vehicles,” IEEE Trans. Ind. Electron., Vol. 55, No. 6, pp. 2268-2276, Jun. 2008. https://doi.org/10.1109/TIE.2008.918399
  4. R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 240-250, Jan. 2008. https://doi.org/10.1109/TIE.2007.896049
  5. R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 3, pp. 953-964, Apr. 2008. https://doi.org/10.1109/TCSI.2008.919744
  6. K. Jin, X. Ruan, M. Yan, and M. Xu, “A hybrid fuel cell system,” IEEE Trans. Ind. Electron., Vol. 56, No. 4, pp. 1212-1222, Apr. 2009. https://doi.org/10.1109/TIE.2008.2008336
  7. L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, “Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1548-1556, May 2009. https://doi.org/10.1109/TIE.2008.2011296
  8. B. Yang, W. Li, Y. Zhao, and X. He, “Design and analysis of a grid-connected photovoltaic power system,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 992-1000, Apr. 2010. https://doi.org/10.1109/TPEL.2009.2036432
  9. W. Li and X. He, “Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1239-1250, Apr. 2011. https://doi.org/10.1109/TIE.2010.2049715
  10. A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, “Cascaded dc-dc converter photovoltaic systems: Power optimization issues,” IEEE Trans. Ind. Electron., Vol. 58, No. 2, pp. 403-411, Feb. 2011. https://doi.org/10.1109/TIE.2010.2043041
  11. T. Kefalas and A. Kladas, “Analysis of transformers working under heavily saturated conditions in grid-connected renewable energy systems, ” IEEE Trans. Ind. Electron., Vol. 59, No. 5, pp. 2342-2350, May. 2012. https://doi.org/10.1109/TIE.2011.2161068
  12. S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2007-2017, Jun. 2010. https://doi.org/10.1109/TIE.2009.2026364
  13. A. K. Rathore, A. K. S. Bhat, and R. Oruganti, “Analysis, design and experimental results of wide range ZVS active-clamped L-L type current-fed dc/dc converter for fuel cells to utility interface,” IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 473-485, Jan. 2012. https://doi.org/10.1109/TIE.2011.2146214
  14. W. Li, W. Li, X. He, D. Xu, and B. Wu, “General derivation law of nonisolated high-step-up interleaved converters with built-in transformer,” IEEE Trans. Ind. Electron., Vol. 59, No. 3, pp. 1650-1661, Mar. 2012. https://doi.org/10.1109/TIE.2011.2163375
  15. K. C. Tseng, C. C. Huang, and W. Y. Shih, “A high step-up converter with a voltage multiplier module for a photovoltaic system,” IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 3047-3057, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2217157
  16. C. T. Pan and C. M. Lai, “A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 1998-2006, Jun. 2010. https://doi.org/10.1109/TIE.2009.2024100
  17. W. Li, X. Xiang, C. Li, W. Li, and X. He, “Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system,” IEEE Trans. Ind. Electron., Vol. 28, No. 1, pp. 300-313, Jan. 2013.
  18. S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A safety enhanced, high step-up dc-dc converter for ac photovoltaic module application,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp.1809-1817, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2170097
  19. T. J. Liang, J. H. Lee, S. M. Chen, J. F. Chen, and L. S. Yang, “Novel isolated high-step-up DC-DC converter with voltage lift,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 161-171, April 2013. https://doi.org/10.1109/TIE.2011.2177789
  20. Y. Zhao, X. Xiang, W. Li, X. He, and C. Xia, “Advanced symmetrical voltage quadrupler rectifiers for high step-up and high output-voltage converters,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp.1622-1631, April 2013. https://doi.org/10.1109/TPEL.2012.2211108
  21. F. Evran and M. T. Aydemir, “Isolated high step-up DC-DC converter with low voltage stress,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3591-3603, July 2014. https://doi.org/10.1109/TPEL.2013.2282813
  22. K. C. Tseng and C. C. Huang, “High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1311-1319, Mar. 2014. https://doi.org/10.1109/TIE.2013.2261036
  23. K. C. Tseng, J. Z. Chen, J. T. Lin, C. C. Huang, and T. H. Yen, “High step-up interleaved forward-flyback boost converter with three-winding coupled inductors” IEEE Trans. Power Electron., Vol. 30, No. 9, pp. 4696-4703, Sep. 2015. https://doi.org/10.1109/TPEL.2014.2364292
  24. W. Li, W. Li, X. Xiang, Y. Hu, and X. He, “High step-up interleaved converter with built-in transformer voltage multiplier cells for sustainable energy applications,” IEEE Trans. Ind. Electron., Vol. 29, No. 6, pp. 2829-2836, Jun. 2014.
  25. K. C. Tseng and C. C. Huang, “High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1311-1319, Mar. 2014. https://doi.org/10.1109/TIE.2013.2261036
  26. Gustavo A. L. Henn, R. N. A. L. Silva, Paulo P. Praca, Luiz H. S. C. Barreto, and Demercil S. Oliveira, Jr, “Interleaved-boost converter with high voltage gain,” IEEE Trans. Power Electron., Vol. 25, No. 11, pp. 2753-2761, Nov. 2010. https://doi.org/10.1109/TPEL.2010.2049379

Cited by

  1. Transformer Less High Voltage Gain Step-Up DC-DC Converter Using Cascode Technique vol.117, 2017, https://doi.org/10.1016/j.egypro.2017.05.105
  2. Implementation of high step-up DC-DC converter using voltage-lift and coupled inductor techniques pp.00989886, 2018, https://doi.org/10.1002/cta.2507
  3. Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications † vol.11, pp.7, 2018, https://doi.org/10.3390/en11071632