DOI QR코드

DOI QR Code

Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae

당화된 도토리의 전분이 미세조류 바이오매스 증식과 바이오오일 함량에 미치는 영향

Choi, Hee-Jeong;Lee, Jung-Min
최희정;이정민

  • Received : 2016.01.04
  • Accepted : 2016.03.10
  • Published : 2016.03.31

Abstract

The growth of the algae strain Chlorella vulgaris under mixotrophic conditions in the presence of saccharified acorn-starch (acorn-glucose) was evaluated with the objective of increasing biomass growth and triacylglycerols (TAGs) content. The results indicated that 81.3% of starch was converted to glucose in acorns. C.vulgaris algal strains grown with acorn-glucose produced higher biomass and TAGs content than with autotrophic growth. The highest biomass production and TAGs content with 3 g/L acorn-glucose were 12.44 g/L and 32.9%, respectively. Biomass production with 3 g/L acorn-glucose was 16.4 fold higher than under autotrophic growth condition. These findings suggested that 3 g/L acorn-glucose is economic and efficient for biomass production/productivity and TAGs content of microalgae. This study provides a feasible way to reduce the cost of bioenergy production from microalgae.

Keywords

Acorn-starch;Biomass;Glucose;Microalgae;Mixotrophic;Oil content

References

  1. Andrade, M. R. and Costa, J. A. V. (2007). Mixotrophic Cultivation of Microalga Spirulina platensis using Molasses as Organic Substrate, Aquaculture, 264, pp. 130-134. https://doi.org/10.1016/j.aquaculture.2006.11.021
  2. Andruleviciute, V., Makareviciene, V., Skorupskaite, V., and Gumbyte, M. (2014). Biomass and Oil Content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under Mixotrophic Growth Conditions in the Presence of Technical Glycerol, Journal of Applied Phycology, 26, pp. 83-90. https://doi.org/10.1007/s10811-013-0048-x
  3. Association of Official Analytical Chemist (AOAC). (1980). Official Methods of Analysis, 14th ed, Association of official analytical chemist, Washington DC, pp. 129-133.
  4. Blakeney, A. B., Harris, P. J., Henry, R. J., and Stone, B. A. (1983). A Simple and Rapid Preparation of Alditol Acetate for Monosaccharide Analysis, Carbohydrate Research, 113(2), pp. 291-299. https://doi.org/10.1016/0008-6215(83)88244-5
  5. Bligh, E. G. and Dyer, W. J. (1959). A Rapid Method of Total Lipid Extraction and Purification, Canadian Journal of Biochemistry and Physiology, 37, pp. 911-917. https://doi.org/10.1139/o59-099
  6. Bouarab, L., Dauta, A., and Loudiki, M. (2004). Heterotrophic and Mixotrophic Growth of Micractinium pusillum fresenius in the Presence of Acetate and Glucose: Effect of Light and Acetate Gradient Concentration, Water Research, 38, pp. 2706-2712. https://doi.org/10.1016/j.watres.2004.03.021
  7. Borowitzka, M. A. and Moheimani, N. R. (2013). Sustainable Biofuels from Algae, Mitigation and Adaptation Strategies for Global Change, 18, pp. 13-25. https://doi.org/10.1007/s11027-010-9271-9
  8. Charef, M., Yousfi, M., Saidi, M., and Stocker, P. (2008). Determineation of the Fatty Acid Composition of Acorn (Quercus), Pistacia Lentiscus Seeds Growing in Algeria, Journal of the American Oil Chemists' Society, 85, pp. 921-924. https://doi.org/10.1007/s11746-008-1283-1
  9. Chaudhary, N., Ngadi, M. O., and Simpson, B. (2012). Comparison of Glucose, Glycerol and Crude Glycerol Fermentation by Echerichia Coli K12, Journal of Bioprocessing and Biotechniques, S1:001 doi:10.4172/2155-9821 https://doi.org/10.4172/2155-9821
  10. Choi, H. J. (2014). Efficiency of Nutrient Removal and Biomass Productivity in the Wastewater by Microalgae Membrane Bioreactor Process, Journal of Korean Society on Water Environment, 30(4), pp. 386-393. [Korean Literature] https://doi.org/10.15681/KSWE.2014.30.4.386
  11. Choi, H. J. (2015a). Effect of Acorn Powder on the Biomass Productivity of Microalgae, Journal of Korean Society on Water Environment, 31(2), pp. 134-141. [Korean Literature] https://doi.org/10.15681/KSWE.2015.31.2.134
  12. Choi, H. J. (2015b). A Comparative Study on Microalgae Recovery Rates in Response to Different Low Cost Bio-flocculant Applications, Journal of Korean Society on Water Environment, 31(6), pp. 625-631. [Korean Literature] https://doi.org/10.15681/KSWE.2015.31.6.625
  13. Choi, H. J. and Yu, S. W. (2015). Influence of Crude Glycerol on the Biomass and Lipid Content of Microalgae, Biotechnology and Biotechnological Equipment, 29(3), pp. 506-513. https://doi.org/10.1080/13102818.2015.1013988
  14. Chojnacka, K. and Noworyta, A. (2004). Evaluation of Spirulina sp. Growth in Photoautotrophic, Heterotrophic and Mixotrophic Cultures, Enzyme and Microbial Technology, 34, pp. 461-465. https://doi.org/10.1016/j.enzmictec.2003.12.002
  15. Gao, C., Zhai, Y., Ding, Y., and Wu, Q. (2009). Application of Sweet Sorghum for Biodiesel Production by Heterotrophic Microalga Chlorella protothecoides, Applied Energy, 87, pp. 756-761. https://doi.org/10.1016/j.apenergy.2009.09.006
  16. Gouvela, L. and Oliveira, C. (2009). Microalgae as a Raw Material for Biofuels Production, Journal of Industrial Microbiology and Biotechnology, 36, pp. 269-274. https://doi.org/10.1007/s10295-008-0495-6
  17. Heredia-Arroyo, T., Wei, W., Ruan, R., and Hu, B. (2011). Mixotrophic Cultivation of Chlorella vulgaris and its Potential Application for the Oil Accumulation from non-sugar Materials, Biomass Bioenergy, 5, pp. 2-10.
  18. Kong, W. B., Yang, H., Cao, Y. T., Song, H., Hua, S. F., and Xia, C. G. (2013). Effects of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Cultures, Food Technology and Biotechnology, 51, pp. 62-69.
  19. Leon-Camacho, M., Viera-Alcaide, I., and Vicario, I. M. (2004). Acorn (Quercus Spp) Fruit Lipids: Saponifiable and Unsaponifiable Fractions: A detailed Study, Journal of the American Oil Chemists' Society, 81, pp. 447-453. https://doi.org/10.1007/s11746-004-0921-8
  20. Liang, Y., Sarkany, N., and Cui, Y. (2009). Biomass and Lipid Productivities of Chlorella vulgaris under Autotrophic, Heterotrophic and Mixotrophic Growth Conditions, Biotechnology Letters, 3, pp. 1043-1049. https://doi.org/10.1007/s10529-009-9975-7
  21. Liang, Y., Sarkany, N., Cui, Y., and Blackburn, J. M. (2010). Batch Stage Study of Lipid Production from Crude Glycerol derived from Yellow Grease or Animal Fats through Microalgal Fermentation, Bioresource Technology, 101, pp. 6745-6750. https://doi.org/10.1016/j.biortech.2010.03.087
  22. Lin, T. S. and Wu, J. Y. (2015). Effect of Carbon Source on Growth and Lipid Accumulation of newly isolated Microalga cultured under Mixtrophic Condition, Bioresource Technology, 184, pp. 100-107. https://doi.org/10.1016/j.biortech.2014.11.005
  23. Mitra, D., van Leenwen, J., and Lamsal, B. (2012). Heterotrophic/Mixotrophic Cultivation of Oleaginous Chlorella vulgaris on Industrial Co-products, Algal Research, 1, pp. 40-48. https://doi.org/10.1016/j.algal.2012.03.002
  24. Pan, P., Tang, Y., Sun, D., Jiang, J., and Song, X. (2014). Effect of Ultrasonic-assisted Pretreatment on Hydrolysis and Fermentation of Acorn Starch, Bioresources, 9(2), pp. 2705-2716. https://doi.org/10.15376/biores.9.2.2705-2716
  25. Perez-Garcia, O., de-Bashan, L. E., Hernandez, J. P., and Bashan, Y. (2010). Efficiency of Growth and Nutrient Uptake from Wastewater by Heterotrophic, Autotrophic, and Mixotrophic Cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense, Journal of Phycology, 46, pp. 800-812. https://doi.org/10.1111/j.1529-8817.2010.00862.x
  26. Pittman, J. K., Dean, A. P., and Osundeko, O. (2011). The Potential of Sustainable Algal Biofuel Production using Wastewater Resources, Bioresource Technology, 102(1), pp. 17-25. https://doi.org/10.1016/j.biortech.2010.06.035
  27. Pyle, D. J., Garcia, R. A., and Wen, Z. (2008). Docosahexaenoic Acid (DHA)-rich Algae from Biodiesel-derived Crude Glycerol: Effects of Impurities on DHA Production and Algal Biomass Composition, Journal of Agricultural and Food Chemistry, 56, pp. 3933-3939. https://doi.org/10.1021/jf800602s
  28. Qiao, H., Wang, G., and Zhang, X. (2009). Isolation and Characterization of Chlorella sorokiniana GXNN01(Chlorophyta) with the Properties of Heterotrophic and Microaerobic Growth, Journal of Phycology, 45, pp. 1153-1162. https://doi.org/10.1111/j.1529-8817.2009.00736.x
  29. Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., and Pérez, A. (2009). Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties, Bioresource Technology, 100, pp. 261-268. https://doi.org/10.1016/j.biortech.2008.06.039
  30. Rudolfi, L., Zittelli, G. C., Bassin, N., Padovani, G., Biondi, N., Bonini, G., and Tredicil, M. R. (2009). Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-cost Photobioreactor, Biotechnology and Bioengineering, 102, pp. 100-112. https://doi.org/10.1002/bit.22033
  31. Shim, T. H., Jin, Y. S., Sa, J. H., Shin, I. C., Heo, S. I., Lee, T. W., Kim, T. W., Park, K. Y., Jeong, K. J., Han, K. S., Oh, H. S., and Wang, M. H. (2005). Studies on the Components and Evaluation of Antioxidation Activity in Acorn Powder, Report, Institute of Health and Environment, 16, pp. 46-52.
  32. Sobczuk, T. M., and Chisti, Y. (2010). Potential Fuel Oils from the Microalga Choricystis minor, Journal of Chemical Technology and Biotechnology, 85, pp. 100-108. https://doi.org/10.1002/jctb.2272
  33. Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A. (2006). Commercial Applications of Microalgae, Journal of Bioscience and Bioengineering, 10, pp. 87-96. https://doi.org/10.1263/jbb.101.87
  34. Stehfest, K., Toepel, J., and Wilhelm, C. (2005). The Application of Micro-FTIR Spectroscopy to analyze Nutrient Stress-related Changes in Biomass Composition of Phytoplankton algae, Plant Physiology and Biochemistry, 43, pp. 717-726. https://doi.org/10.1016/j.plaphy.2005.07.001
  35. Tang, Y., Zhao, D. Q., Cristhian, C., and Jiang, J. X. (2011). Simultaneous Saccharification and Cofermentation of Lignocellulosic Residues from Commercial Furfural Production and Corn Kernels using Different Nutrient Media, Biotechnology for Biofuels, 4(22), doi: 10.1186/1754-6834-4-22. https://doi.org/10.1186/1754-6834-4-22
  36. Vidotti, A. D. S., Coelho, R. S., Franco, L. M., and Franco, T. T. (2014). Miniaturized Culture for Hetrotrophic Microalgae using Low Cost Carbon Sources as a Tool to isolate fast and economical Strains, Chemical engineering transactions, 38, pp. 325-330.
  37. Yamane, Y., Utsunomiya, T., Watanabe, M., and Sasaki, K. (2001). Biomass Production in Mixotrophic Culture of Euglena gracilis under Acidic Conditions and its Growth Energetic, Biotechnology Letters, 23, pp. 1223-1228. https://doi.org/10.1023/A:1010573218863
  38. Yang, C., Hua, Q., and Shimizu, K. (2000). Energetics and Carbon Metabolism during Growth of Microalgal Cells under Photoautotrophic, Mixotrophic and Cyclic Light-autotrophic/Dark-heterotrophic Conditions, Biochemical Engineering Journal, 6, pp. 87-102. https://doi.org/10.1016/S1369-703X(00)00080-2
  39. Yeh, K. L. and Chang, J. S. (2012). Effects of Cultivation Conditions and Media Composition on Cell Growth and Lipid Productivity of Indigenous Microalga Chlorella vulgaris ESP-31, Bioresource Technology, 105, pp. 120-127. https://doi.org/10.1016/j.biortech.2011.11.103
  40. Zhang, H., Weiliang, L. Y., Yang, W., and Shen, G. (2011). Mixotrophic Cultivation of Botryococcus braunii, Biomass Bioenergy, 35, pp. 1710-1715. https://doi.org/10.1016/j.biombioe.2011.01.002

Cited by

  1. Parametric study of brewery wastewater effluent treatment using Chlorella vulgaris microalgae vol.21, pp.4, 2016, https://doi.org/10.4491/eer.2016.024
  2. Advances in microalgal biomass/bioenergy production with agricultural by-products: Analysis with various growth rate models vol.24, pp.2, 2018, https://doi.org/10.4491/eer.2018.193