DOI QR코드

DOI QR Code

Thermal Conductivity Analysis of Amorphous Silicon Formed by Natural Cooling: A Molecular-dynamics Study

Lee, Byoung Min

  • Received : 2016.03.25
  • Accepted : 2016.05.18
  • Published : 2016.05.31

Abstract

To investigate the thermal conductivity and the structural properties of naturally cooled excimer-laser annealed Si, molecular-dynamics (MD) simulations have been performed. The thermal conductivity of crystalline Si (c-Si) was measured by direct method at 1000 K. Steady-state heat flow was measured using a stationary temperature profile; significant deviations from Fourier's law were not observed. Reliable processes for measuring the thermal conductivity of c-Si were presented. A natural cooling process to admit heat flow from molten Si (l-Si) to c-Si was performed using an MD cell with a size of $48.9{\times}48.9{\times}97.8{\AA}^3$. During the cooling process, the temperature of the bottom $10{\AA}$ of the MD cell was controlled at 300 K. The results suggest that the natural cooling system described the static structural property of amorphous Si (a-Si) well.

Keywords

MD simulations;Silicon;Thermal conductivity;Natural cooling;Static structure factors

References

  1. M. L. Samb, E. Jacques, K. Belarbi, N. Coulon, and T. Mohammed-Brahim, "${\mu}c-Si$ Thin Film Transistors with very Thin Active Layer," Solid-State Electron., 89 [1] 128-33 (2013). https://doi.org/10.1016/j.sse.2013.07.001
  2. A. Orpella, I. Martin, J. M. Lopez-Gonzalez, P. Ortega, J. Munoz, D. C. Sinde, C. Voz, J. Puigdollers, and R. Alcubilla, "Experimental Determination of Base Resistance Contribution for Point-like Contacted c-Si Solar Cells Using Impedance Spectroscopy Analysis," Sol. Energy Mater. Sol. Cells, 141 [5] 350-55 (2015). https://doi.org/10.1016/j.solmat.2015.06.013
  3. R. S. Sposili and J. S. Im, "Sequential Lateral Solidification of Thin Silicon Films on $SiO_2$," Appl. Phys. Lett., 69 [19] 2864-66 (1996). https://doi.org/10.1063/1.117344
  4. M. Hatano, S, Moon, and M, Lee, "Excimer Laser-Induced Temperature Field in Melting and Resolidification of Silicon Thin Films," J. Appl. Phys., 87 [1] 36-43 (2000). https://doi.org/10.1063/1.371823
  5. M. Nerding, R. Dasson, S. Christiansen, J. R. Kohler, J. Krinke, J. H. Werner, and H.-P. Strunk, "Microstructure of Laser-Crystallized Silicon Thin Films on Glass Substrate," J. Appl. Phys., 91 [8] 4125-30 (2002). https://doi.org/10.1063/1.1454189
  6. M. Lee, K. Suzuki, and C. P. Grigoropoulos, "Relationship between Fluence Gradient and Lateral Grain Growth in Spatially Controlled Excimer Laser Crystallization of Amorphous Silicon Films," J. Appl. Phys., 88 [9] 4994-99 (2000). https://doi.org/10.1063/1.1314303
  7. K. Ishikawa, M. Oazwa, C. H. Oh, and M. Matsumura, "Excimer-Laser-Induced Lateral-Growth of Silicon Thin-Films," Jpn. J. Appl. Phys,. 37 [3A] 731-36 (1998). https://doi.org/10.1143/JJAP.37.731
  8. J. B. Boyce, P. Mei, R. T. Fulks, and J. Ho, "Laser Processing of Polysilicon Thin-Film Transistors: Grain Growth and Device Fabrication," Phys. Stat. Sol. A, 166 [2] 729-41 (1998). https://doi.org/10.1002/(SICI)1521-396X(199804)166:2<729::AID-PSSA729>3.0.CO;2-1
  9. P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity," Phys. Rev. B, 65 [14] 144306 (2002). https://doi.org/10.1103/PhysRevB.65.144306
  10. B. M. Lee, B. S. Seong, S. Munetoh, and T. Motooka, "Heat Flow and Structural Properties of Naturally Cooled a-Si: A Molecular Dynamics Study," J. Korean Phys. Soc., 49 [6] 2353-61 (2006).
  11. B. M. Lee, S. Munetoh, and T. Motooka, "Molecular Dynamics Study of Velocity Distribution and Local Temperature Change during Rapid Cooling Processes in Excimer-laser Annealed Silicon," Comp. Mater. Sci., 37 [3] 198-202 (2006). https://doi.org/10.1016/j.commatsci.2006.01.017
  12. B. M. Lee, H. K. Baik, B. S. Seong, S. Munetoh, and T. Motooka, "Molecular-Dynamics Analysis of the Nucleation and Crystallization Process of Si," Phys. B, 392 [2] 266-71 (2007). https://doi.org/10.1016/j.physb.2006.11.031
  13. B. M. Lee, "Crystal Growth and Nucleation in Liquid Silicon During Natural Cooling: A Molecular-Dynamics Simulation," Korean J. Met. Mater., 45 [12] 681-87 (2007).
  14. B. M. Lee, T. Kuranaga S. Munetoh, and T. Motooka, "Surface Nucleation of the (111) Plane of Excimer Laser Annealed Si on $SiO_2$ Substrates: A Molecular Dynamics Study," J. Appl. Phys., 101 [5] 0543161-67 (2007).
  15. B. M. Lee, T. Motooka, and S. Munetoh, "Molecular-Dynamics Simulations of Nucleation and Crystallization Processes of Laser Crystallized Poly-Si," J. Phys.: Condens. Matter, 20 [5] 055205-15 (2008).
  16. M. Z. Bazant and E. Kaziras, "Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves," Phys. Rev. Lett., 77 [21] 4370-73 (1996). https://doi.org/10.1103/PhysRevLett.77.4370
  17. J. Q. Broughton and X. P. Li, "Phase Diagram of Silicon by Molecular Dynamics," Phys. Rev. B, 35 [17] 9120-27 (1987). https://doi.org/10.1103/PhysRevB.35.9120
  18. J. Tersoff, "New Empirical Model for the Structural Properties of Silicon," Phys. Rev. Lett., 56 [6] 632-35 (1986). https://doi.org/10.1103/PhysRevLett.56.632
  19. W. D. Luedtke and U. Lendman, "Preparation and Melting of Amorphous Silicon by Molecular-Dynamics Simulations," Phys. Rev. B, 37 [9] 4656-63 (1988).
  20. L. J. Porter, S. Yip, M. Yamaguchi, H. Kaburaki, and M. Tang, "Empirical Bond-Order Potential Description of Thermodynamic Properties of Crystalline Silicon," J. Appl. Phys., 81 96-106 (1997). https://doi.org/10.1063/1.364102
  21. M, Ishimaru, K. Yoshida, and T. Motooka, "Potential Model for Silicon Clusters," Phys. Rev. B, 39 [2] 1212-18 (1989). https://doi.org/10.1103/PhysRevB.39.1212
  22. R. D. Mountain and R. A. MacDonald, "Thermal Conductivity of Crystals: A Molecular-Dynamics Study of Heat Flow in a Two-Dimensional Crystal," Phys. Rev. B, 28 [6] 3022-25 (1983). https://doi.org/10.1103/PhysRevB.28.3022
  23. N. Takeuchi and I. L. Garzon, "Ab initio Molecular-Dynamics Study of Structural, Dynamical, and Electronic Properties of Liquid Ge," Phys. Rev. B, 50 [12] 8342-47 (1994). https://doi.org/10.1103/PhysRevB.50.8342
  24. I. Stich, R. Car, and M. Parrinello, "Structural, Bonding, Dynamical, and Electronic Properties of Liquid Silicon: An ab initio Molecular-Dynamics Study," Phys. Rev. B, 44 [9] 4262-74 (1991). https://doi.org/10.1103/PhysRevB.44.4262
  25. M. Ishmaru, S. Munetho, and R. Motooka, "Generation of Amorphous Silicon Structures by Rapid Quenching: A Molecular-Dynamics Study," Phys. Rev. B, 56 [23] 15133-38 (1997). https://doi.org/10.1103/PhysRevB.56.15133

Acknowledgement

Grant : 제조혁신 전문인력양성

Supported by : 한국생산기술연구원(재단)